

INDEX

Sr.		Page No
No.		
1	Semester – I	16-35
2	Semester – II	36-63
3	Semester – III	64-86
4	Semester – IV	87-103
5	Semester – V	104-127
6	Semester -VI	128-152

REGULATION FOR THE UNDERGRADUATE DEGREE PROGRAMB. TECH. ARTIFICIAL INTELLIGENCE (AI) AND DATA SCIENCE BTAI (2023-24)

1. Eligibility

• The Candidate should be an Indian National

- Passed 10+2 examination with Physics/ Mathematics / Chemistry/ Computer Science/ Electronics/ Information Technology/ Biology/ Informatics Practices/ Biotechnology/ Technical Vocational subject/ Agriculture/ Engineering Graphics/ Business Studies/ Entrepreneurship as per table1.3(a) Agriculture stream (for Agriculture Engineering) Obtained at least 50% marks (45% marks in case of candidates belonging to reserved category) in the above subjects taken together.
- Good Scores in any one of the following entrance exams: All India Level B. Tech. Artificial Intelligence (AI) and Data Science DPU Engineering Entrance Exam (AIBTAIET) or JEE (Main) or Any State Government Engineering Entrance Examination.

2. Provision of Lateral Entry

Passed min. 3 years Diploma examination with at least 50% marks (45% marks in case of candidates belonging to reserved category subject to vacancies in the First Year, in case the vacancies at lateral entry are exhausted.

(The Universities will offer suitable bridge courses such as Mathematics, Physics, Engineering drawing, etc., for the students coming from diverse backgrounds to prepare Level playing field and desired learning outcomes of the programme).

3. Duration of the course

The B. Tech undergraduate degree program is of four years (Total Eight semesters) degree program. Duration of the course: 4 years i.e. 8 semesters. Semesters - An academic year consists of two semesters Odd Semester: June/July to November/December Even Semester: November/December to April/May

4. Medium of instruction:

English shall be the medium of instruction for all the subjects of study and for examination of the course.

5.Attendance:

- A candidate has to secure minimum-
- 1.75% attendance in theory
- 2.80% in practical for qualifying to appear for the final examination.

6. Scheme of Examination

(a) Internal Examinations (Theory + Practical + Project)

- 1. There shall be two internal examinations (also called internal assessment tests I and II) of one hour duration for each course to be held as per the schedule fixed in the Academic Calendar.
- 2. A student can take for supplementary re-internal exam of a specific subject or all the subjects for the betterment of performance in case of scoring of less mark in previous internal assessment exams only after successful submission of an application to the class teacher which will be approved by Director/Principal of the institute.
- 3. A student has to do Project Based Learnings from the first year of their engineering, at the end of the degree program i.e. to the final year of engineering student has to perform the real life problem statement project in a group of 3 to 5 students.

University Theory Examination Pattern				
Section A				
MCQs	15 x 1 Mark each	15 Marks		
Section B				
Short Questions (Any 5 out of 8)	05 x 3 Marks each	15 Marks		
Long answer Questions(Any 2 out	02 * 5 Marks each	10 Marks		
3)				
Section C				
Long answer Questions (Any 2out	02 x 10 Marks each	20 Marks		
of 3)				
	Total	60 Marks		

b). University Examination

(c) EVALUATION SCHEME (THEORY)

Examination Duration Marks

I Internal 45 minutes 20

II Internal 30 minutes 15

Attendance 5

End Semester 2 hours 30 minutes 60

Total 100

PRACTICAL EVALUATION SCHEME

Examination Marks

Practical Internal (Continuous) assessment: 40

End semester examination: 60

Total: 100

Standard of Passing:

- 1. The standard of passing shall be minimum 50% in each subject.
- 2. The marks of all heads combined (University Theory Exam + Internal Assessment Theory + Practical / Viva) shall be considered together for Passing of the candidate.

(d) Grace Marks

The grace marks up to a maximum of 1 percentage of total marks may be awarded to a student who has failed in not more than two subjects in the respective semester. Provided that these grace marks shall be awarded only if the student passes after awarding these marks.

(e) Grading System

UGC 10-point Grading Scale

Marks	Letter Grade	Grade Point
90 To 100	O : Outstanding	10
80 To 89	A+ : Excellent	9
70 To 79	A : Very Good	8
60 To 69	B + : Good	7
55 To 59	B : Average	6
50 To 54	P : Pass	5
00 To 49	F : Fail	0
-	AB : Absent	0

Computation of SGPA and CGPA

The UGC recommends the following procedure to compute the Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA):

i. The SGPA is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e.

SGPA (Si) = Σ (Ci x Gi) / Σ Ci

where Ci is the number of credits of the course and Gi is the grade point scored by the student in the course.

ii. The CGPA is also calculated in the same manner taking into account all the courses undergone by a student over all the semesters of a programme, i.e.

 $CGPA = \Sigma(Ci \times Si) / \Sigma Ci$ where Si is the SGPA of the semester and Ci is the total number of credits in that semester.

iii. The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

Illustration of Computation of SGPA and CGPA and Format for Transcripts

i. Computation of SGPA and CGPA

Illustration for SGPA

Course	Credit	Grade	Grade	Credit Point (Credit
		letter	point	x Grade
Course 1	3	Α	8	3 X 8 = 24
Course 2	4	B+	7	4 X 7 = 28
Course 3	3	В	6	3 X 6 = 18
Course 4	3	0	10	3 X 10 = 30
Course 5	3	С	5	3 X 5 = 15
Course 6	4	В	6	4 X 6 = 24
	20			139

Thus, SGPA =139/20 =6.95

Ш	lus	tra	tion	for	CGPA	

semester 1	semester 2	semester 3	semester 4	semester 5	semester 6
credit : 20	credit: 22	credit: 25	credit : 26	credit: 26	credit: 25
sgpa : 6.9	sgpa : 7.8	sgpa : 5.6	sgpa : 6.0	sgpa : 6.3	sgpa : 8.0

ii. Transcript (Format): Based on the above recommendations on Letter grades, grade points and SGPA and CGPA, the Institute may issue the transcript for each semester and a consolidated transcript indicating the performance in all semesters.

(f) ATKT (Allowed-to-keep-terms)

- 1. A Student who has failed in 3 subjects with 2 practical in respective academic year (Both Semesters combined) shall be allowed to keep term for next Semester respectively.
- 2. A student who failed more than 3 subjects in whole academic year cannot be promoted to next academic year.
- For enrolment in third year of B. Tech Engineering program, a student must pass the university examinations of 1st & 2nd semesters of first year B. Tech , and a student from second year B. Tech Engineering program can be promoted to third year B. Tech Engineering program with not more than 3 subjects of second year B.Tech Engineering program (Both Semesters combined) as a backlog.

(i) Criteria for appointment of Examiner (Internal & External) and terms of their appointment.

- 1. Adhoc Board of Studies of Computer Science and Engineering shall submit, to the Committee constituted by Board of Examinations, a panel of examiner names, along with their addresses, suitable for appointment as Internal and External Examiners.
- 2. Examiners shall be appointed by the Academic Council as per section 8(b) (viii) of the Rules of Dr. D. Y. Patil University on the recommendations of the Board of Examinations.
- 3. In case of refusal from the person so appointed, the Controller of Examinations shall appoint substitute examiners from the panel approved.
- 4. Internal and External Examiners: An "Internal Examiner" means a person who is a teacher in the constituent college(s) / institute(s) of the University. The teachers in other universities or recognized teacher of other University in the state or outside the state shall be referred to as the "External Examiner".
- 5. Intimation of appointment as the examiner shall be accompanied by a copy of the instructions/guidelines relating to the examination for he/she is appointed, as also the information regarding the remuneration he/she shall be entitled to draw, if he/she acts as examiner. He/ She is expected to attend to and shall be required to send to the Controller of Examinations.
- 6. Examiners shall be appointed for examinations to be held in that academic year; however they shall be eligible for reappointment.
- 7. Relatives, Close Friends or next to the kin which are directly or indirectly related to the candidates shall not to be included.

7. Eligibility Criteria for appearing the Entrance Test

- a) The candidate should be an Indian National.
- b) Minimum age: 17 years on or before 31st December 2023
- c) The candidate must have either appeared at Higher Secondary Certificate (HSC / Std. XII) examination

OR

Passed 10+2 examination with Physics/ Mathematics / Chemistry/ Computer Science/ Electronics/ Information Technology/ Biology/ Informatics Practices/ Biotechnology/ Technical Vocational subject/ Agriculture/ Engineering Graphics/ Business Studies/ Entrepreneurship as per table1.3(a) Agriculture stream (for Agriculture Engineering) Obtained at least 50% marks (45% marks in case of candidates belonging to reserved category) in the above subjects taken together Passed min. 3 years Diploma examination with at least 50% marks (45% marks in case of candidates belonging to reserved category subject to vacancies in the First Year, in case the vacancies at lateral entry are exhausted. (The Universities will offer suitable bridge courses such as Mathematics, Physics, Engineering drawing, etc., for the students coming from diverse backgrounds to prepare Level playing field and desired learning outcomes of the programme).

8. Eligibility for NRI/PIO/FN

- a) A candidate in any of these categories shall have completed 17 years of age on or before 31st December 2023.
- b) He/she must have Physics, Chemistry, Maths and English (and desirably Biology or Life Sciences) at the CBSE, ISC, HSC or an equivalent examination.
- c) In the case of a student from any school that follows the American system of education, the candidate must have studied Physics, Chemistry and Mathematics, carrying 100 marks (25 marks each for Physics & Chemistry and 50 marks for Mathematic subject).
- d) Maths (and desirably Biology) at AP'(Advanced Placement) level and must have minimum 'C' grade in these subjects. In the case of students passing Cambridge International Examination (CIE) the candidate should have passed Physics, Chemistry and Maths at "Advanced" level along with English at "Advanced Subsidiary" (AS) level.

*Note: Reservation will be as per directives of the Government of India, for universities established under Section 3 of UGC Act 1956 by Govt. of India, through the University Grants Commission as and when received.

9. General Category:

Admissions to this category shall be made on the basis of the merit of the candidates, who have qualified at the AIBTAIET-2023. NRI/PIO/FN Category: A candidate belonging to this category is not required to appear at the AIBTAIET-2023. However, he/she shall submit a separate application, in the prescribed form, available in the Vidyapeeth office and on the Vidyapeeth website. A committee, appointed by the competent authority for the purpose shall admit candidates on the basis of their inter se merit. The candidate will be required to pay a processing fee of US \$ 200. In case any seat earmarked for NRI/PIO/FN is not filled in by the candidate(s) of any of these subcategories, the Management shall fill in such vacant seat(s) from the candidate(s) who has/have cleared the AIBTAIET-2023 and has/ have applied for the seat separately in the prescribed form available in the Vidyapeeth office and website.

10. Discipline & Code of Conduct:

10.1 Obligations of the Student

- 10.1.1 Conduct himself / herself properly
- 10.1.2 Maintain proper behavior.
- 10.1.3 Observe strict discipline both within the campus, hostel & outside of the Institution.
- 10.1.4 Ensure that no act of his / her consciously or unconsciously brings the Institution or any establishment or authority connected with it into disrespect.
- **10.2** Any act/s by the student which is contrary to the clause (1), shall constitute misconduct and/or indiscipline, which include any one or more of the acts jointly or severally, mentioned hereinafter;
 - 10.2.1 Any act of the student which directly or indirectly causes or attempts to cause disturbance in the lawful functioning of the Institution.
 - 10.2.2 The student who is repeatedly absent from the class, lectures, tutorials, practicals and other courses.
 - 10.2.3 The student not abiding by the instructions of the Faculty members and not interacting with them with due respect.
 - 10.2.4 Any student found misbehaving in the campus/class or behaving arrogantly, violently towards the faculty, staff or fellow student.
 - 10.2.5 The Students who is not present for all the class tests, midterm tests, terminal and preliminary examinations.
 - 10.2.6 Permitting or conniving with any person / parent / guardian, which is not authorized to occupy hostel room, residential quarter, or any other accommodation or any part thereof of the Institution.
 - 10.2.7 Obstruction to any student or group of students in any legitimate activities, in classrooms / laboratories / field or places of social and cultural activities within the campus of the Institute.
 - 10.2.8 Possessing or using any fire arms, lethal weapon, explosives, or dangerous substances in the premises of the Institution.
 - 10.2.9 Indulging in any act which would cause embarrassment or annoyance to any student / authority / staff or any member of the staff.

- 10.2.10 Stealing or damaging any farm produce or any property belonging to the Institution, staff member or student.
- 10.2.11 Securing admission in the Institution, to any undergraduate or post graduate program or any other course by fabrication or suppression of facts or information.
- 10.2.12 If the student fails to complete the assignments regularly and has poor academic performance when assessed by the regular class teachers and internal assessment, he/she will not be allowed to appear for the Vidyapeeth examination.
- 10.2.13 If a student remains absent for lectures, practical or class test and examinations without prior permission of the principal or the head of the departments, she/he will not be compensated for extra class.
- 10.2.14 Students should read the notices regularly on notice boards in the academic complex, library and the department notice boards.
- 10.2.15 Damage of property of the college and its sister institutes like tampering with fixtures, fittings, equipment's, instruments, furniture, books, periodicals, walls, windows panels, vehicles etc., will be viewed very seriously.
- 10.2.16 Recording of any electronic images in the form of photographs, audio or video recording of any person without the person's knowledge; when such recording is likely to cause injury, distress, or damage the reputation of such person; is prohibited in any part of the College and hostel premises. The storing, sharing or distributing of such unauthorized records by any means is also prohibited.
- 10.2.17 Use of mobile phones and head phones during college hours is prohibited.
- 10.2.18 As per the rules and regulations of the Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, 80% attendance in a subject for appearing in the examination is compulsory inclusive of attendance in non-lecture teaching i.e. seminars, group discussion, tutorials, demonstrations, practical's, hospital (tertiary, secondary, primary) posting and bedside clinics etc.
- 10.2.19 The Students must present in proper dress code with apron/ lab coat, name badge and identity card on all week days/working days and during clinical duties.

- 10.2.20 Admission of the student will be cancelled at any point of time in case of;
 - 10.2.20.1 Not submitting the required documents on time.
 - 10.2.20.2 Failing to fulfil required eligibility criteria of the program.
 - 10.2.20.3 Submission of fake or incorrect documents.
 - 10.2.20.4 Admission gained by resorting to fraudulent means, illegal gratification or any unfair practice detected at any stage during the entire program.
 - 10.2.20.5 Not paying the stipulated fees on time.

11. Attendance & Progress:

Each student shall always maintain decency, decorum and good conduct, besides keeping steady progress and require attendance. The conduct/ academic performance/ attendance of each student shall be reviewed periodically and appropriate action, including detaining from appearing for the Vidyapeeth Exam/ expelling from the Hostel or College, as the case may be, will be taken against the erring student. The students shall abide by such decision of the authorities of the Institution/Vidyapeeth.

12 Payment of Tuition and other Fees

- 12.1 On admission of candidates to the first year of the course of study, all the notified fees viz., annual tuition fee, registration and eligibility fee, health insurance, caution deposit, hostel and mess fee, etc., as applicable, should be paid on or before the prescribed date without fail. Any delay will attract penalty as specified. If any candidate fails to remit tuition fee and other fees within the last date as notified, he/she will forfeit his/her admission to the course concerned.
- 12.2 In respect of subsequent year(s) of study, tuition fee and other specified fees shall be paid on or before the date as notified to the parents/students and on the Notice Board of the Institution/College concerned. Late payment, if any, will attract penalty as specified.
- 12.3 Similarly, examination fee, as prescribed and notified from time to time, shall be paid on or before the due date. If there is any delay, student has to pay penalty as specified. If any student fails to remit the examination fee even after lapse of the period specified for payment with penalty, such student will not be issued Hall Ticket for the Vidyapeeth examination (s) / debarred from appearing in the Vidyapeeth examination (s).
- 12.4 All fees, once paid to the Vidyapeeth account, will not be refunded or adjusted for any other purpose under any circumstances.

13. Rules relating to Vidyapeeth examinations:

- 13.1 The candidates appearing for the Vidyapeeth theory examinations shall be under the direct disciplinary control of the Centre-in-charge. Possession of cell phone or any electronic device or incriminatory materials by a candidate or found copying from any device in the examination hall, is strictly prohibited.
- 13.2 Disciplinary action will be initiated if any candidate indulges in any malpractice (unfair means) as enumerated in the Vidyapeeth Examination Manual.

14. Rules for Hostel Students All inmates of the Hostel shall observe the following rules for the smooth and efficient running of the hostel and for their comfortable stay: -

- 14.1 Only bonafide students of Vidyapeeth are eligible for admission to the hostels.
- 14.2 Students who fail to remit the Hostel fee even after a reminder in writing, shall vacate the hostel room allotted to them, forthwith.
- 14.3 No posters or pictures should be stuck inside and outside the room or anywhere around the premises of the hostel or College. Hostlers should avoid sticking bills and posters on the windows, doors and walls (except name strips on the room door). In case the room is found not in order, fine will be levied on the erring student.
- 14.4 Inmates should switch off fans and lights before leaving their rooms.
- 14.5 The inmates are advised to close the taps after use in order to avoid wastage of water.
- 14.6 Dining services will be provided only in the mess and there will be no room service.
- 14.7 Whenever any hosteller falls sick the same should be reported by him/her to the warden who will provide all necessary assistance to get appropriate treatment or medicines.
- 14.8 While going out of hostel the students should enter their name in the register & sign the same by mentioning proper reason.

- 14.9 To leave the hostel premises, permission of the Chief Warden is absolutely necessary. Students who want to stay overnight to visit their parents or guardians should approach the Chief Warden for permission. Permission will be granted only after obtaining written request from the parent/guardian duly signed by them, which will be duly entered in a register maintained in each block by the Warden.
- 14.10 All rooms, corridors, toilets etc. must be kept clean and any student who violates the rule shall be expelled from the hostel.
- 14.11 Hostel facility is provided with a view to help the student to pursue his/her studies in good environment and to facilitate/ promote his/her academic progress.

All students will be governed by the rules stated above and by those that will be framed from time to time during the academic year.

Failure on the part of the students to abide by the disciplinary rules will result in such punishment including expulsion from the College/Hostel as may be imposed by the Institution / Vidyapeeth/ Head of the Institution.

The decision of the Institution/Vidyapeeth/Head of the Institution with regard to disciplinary cases shall be final and all the students shall abide by such decisions.

15 Powers of Competent Authority (Dean/Principal/ Director at the Institute level)

The Competent authority may impose any one or more of the following punishment/s on the student found guilty of misconduct, indiscipline, in proportion thereof:

- 15.1 Warning/reprimand
- 15.2 Fine
- 15.3 Cancellation/withheld scholarship / award / prize / medal.
- 15.4 Expulsion from the Hostel.
- 15.5 Expulsion from the institution
- 15.6 Cancellation of the result of the student concerned in the examination of the Institution.
- 15.7 Temporary annulment from the Hostel/ Institution.
- 15.8 Rustication from the Institution.

16. Procedure for Inquiry

If the competent authority is satisfied that there is a prima facie case inflicting penalty, mentioned in clause No. 8, the authority shall make inquiry, in the following manner:

- 16.1 Due notice in writing shall be given to the student concerned about his alleged act of misconduct /indiscipline.
- 16.2 Student charged shall be required within 15 days of the notice to submit his/her written representation about such charge/s.
- 16.3 If the student fails to submit written representation within specified time limit, the inquiry may be held-ex-parte.
- 16.4 If the student charged desired to see the relevant documents, such of the documents, as are being taken into consideration for the purpose of proving the charge/s, may at the discretion of the inquiry authority, be shown to the student.
- 16.5 The student charged shall be required to produce documents, if any in support of his defense. The inquiry authority may admit relevant evidence / documents.
- 16.6 Inquiry Authority shall record findings on each implication of misconduct or indiscipline, and the reason for such finding and submit the report along with proceedings to the competent Authority
- 16.7 The competent Authority on the basis of findings, shall pass such orders as it deems fit.

17. Appeal

If the punishment/fine/rustication is imposed on a student by Dean/Principal/ Director, such a student shall be entitled to file an appeal before the Vice- Chancellor within thirty (30) days of the receipt of the order

COURSE STRUCTURE FOR B. TECH. ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

SEMESTER I								
Course Code	Course Name	L	Т	Р	Hr	Cr		
BSC 101	Physics	3	0	2	5	4		
BSC 102	Chemistry	3	0	2	5	4		
ESC 101	Basic Electronics and Electrical Engineering	2	0	2	4	3		
ESC 102	Fundamentals of programming Languages	3	0	4	7	5		
HSMC 101	Communication Skills	1	2	0	3	3		
BSC 103	Mathematics	3	0	0	3	3		
	Total			10	27	22		
	SEMESTER II							
Course Code	Course Name	L	Т	Р	Hr	Cr		
ESC 201	Problem Solving by Programming	3	0	4	7	5		
BSC 201	Computational Statistics	3	0	0	3	3		
BSC 202	General Biology	2	0	0	2	2		
ESC 202	Engineering Graphics and Design	1	0	4	5	3		
ESC 203	Engineering Mechanics	3	0	0	3	3		
ESC 204	Project Based Learning –I	0	0	4	4	2		
ESC 205	Workshop and manufacturing practices- laboratory	0	0	4	4	2		
Total 12 0 16 28 20								

SEMESTER III							
Course Code	Course Name	L	Т	Р	Hr	Cr	
BSC 301	Discrete Structure	3	0	0	3	3	
PCC-AI 301	Data Structures and Algorithms	3	0	4	7	5	
PCC-AI 302	Software Engineering and Project Management	3	0	4	7	5	
PCC-AI 303	Database Management Systems	3	0	4	7	5	
PCC-AI 304	Project Based Learning-II	0	1	4	5	3	
HSMC 201	Universal Human Values-II	2	1	0	3	3	
Total 14 2 16 32 24							
	Total	14	2	16	32	24	
	Total SEMESTER IV	14	2	16	32	24	
Course Code	Total SEMESTER IV Course Name	14 L	2 T	16 P	32 Hr	24 Cr	
Course Code PCC-AI 401	Total SEMESTER IV Course Name Artificial Intelligence	14 L 3	2 T 0	16 P 4	32 Hr 7	24 Cr 5	
Course Code PCC-AI 401 PCC-AI 402	Total SEMESTER IV Course Name Artificial Intelligence Digital Logic Design and Processor Architecture	14 L 3 3	2 T 0 0	16 P 4 4	32 Hr 7 7	24 Cr 5 5	
Course Code PCC-AI 401 PCC-AI 402 PCC-AI 403	TotalSEMESTER IVCourse NameArtificial IntelligenceDigital Logic Design and ProcessorArchitectureComputer Networks	14 L 3 3 3	2 T 0 0	16 P 4 4 4	32 Hr 7 7 7	24 Cr 5 5 5	
Course Code PCC-AI 401 PCC-AI 402 PCC-AI 403 PCC-AI 404	TotalSEMESTER IVCourse NameArtificial IntelligenceDigital Logic Design and ProcessorArchitectureComputer NetworksR Programming	14 L 3 3 3 2	2 T 0 0 0 0	16 P 4 4 4 4	32 Hr 7 7 7 6	24 Cr 5 5 5 4	

	Total	14	0	20	34	24	
	SEMESTER V		-	-	-		
Course Code	Course Name	L	Т	Р	Hr	Cr	
PCC-AI 501	Big data analytics	3	0	2	5	4	
PCC-AI 502	Machine Learning	3	0	2	5	4	
PCC-AI 503	Web Technology	3	0	2	5	4	
PCC-AI 504	Design and Analysis of Algorithm	3	0	0	3	3	
PEC-AI 501	Elective-I	3	0	0	3	3	
PEC-AI 502	Skill Enhancement Course-I	2	0	0	2	2	
	Total	16	0	12	23	20	
Elective I (A-Hu	ıman Computer Interface, B-System modeling	and Do	esign,	C-Pat	tern		
Recognition, D-S	Structural Biology and Bioinformatics)		-				
Skill Enhanceme	ent Course I : Language-I: (Foreign Language	(French	n/Gerr	nan/Ja	panese)/	
Hindi/Marathi)							
	SEMESTER VI				r	-	
Course Code	Course Name	L	Т	Р	Hr	Cr	
PCC-AI 601	Advanced Databases	3	0	2	5	4	
PCC-AI 602	Deep Learning	3	0	2	5	4	
PCC-AI 603	Machine Learning & Network Security	3	0	2	5	4	
PCC-AI 604	Information Retrieval	2	0	0	2	2	
PEC-AI 601	Elective II	3	0	0	3	3	
PEC-AI 601	Skill Enhancement Course-II/ Internship	3	0	0	3	3	
	Total	17	0	6	23	20	
Elective II (A-S	oftware architecture, B-Quantum AI, C-Robot	tics and	Auto	mation	ı, D-		
Cognitive Comp	uting)						
Skill Enhanceme	ent Course II Language-II: (Foreign Language	(Frencl	h/Ger	man/Ja	panese)/	
Hindi/Marathi)/	Internship of 1 month.						
	SEMESTER VII		r				
Course Code	Course Name		T	P	Hr	Cr	
PEC-AI 701	Skill Enhancement Course-	2	0	0	2	2	
PCC-AI 702	Project- I/Internship	0	0	0	28	14	
	Total	2	0	28	30	16	
Skill Enhanceme	ent Course-III: Front end development with H	ΓML5.	CSS3	/Javaso	cript /		
ReactJS/Angular		- ,			I		
	SEMESTER VIII						
Course Code	Course Name	L	Т	Р	Hr	Cr	
PEC-AI 801	Skill Enhancement Course-IV	2	0	0	2	2	
PCC-AI 802	Project- II/Internship	0	0	0	28	14	
	Total	2	0	28	30	16	
Skill Enhanceme	ent Course-IV : DevOps/Cloud (AWS/AZURE	E)/Sales	force			-	
TOTAL CREDITS-168							

Examination evaluation scheme as follows:

EVALUATION SCHEM	IE (THEORY)	
Examination	Duration	Marks
	16	

I Internal	45 minutes	20
II Internal	30 minutes	15
Attendance		5
End Semester	2 hours 30 minutes	60
Total		100
PRACTICAL EVAL	UATION SCHEME	

:	40	
:	60	
:	100	
	:	: 40 : 60 : 100

	Course Code:
BSC	Basic Science Course
ESC	Engineering Science Course
PCC	Professional Core Course
PEC	Professional Elective Course
HSMC	Humanities & Social Sciences including Management

	SEMESTER I										
Course	Course Name	L	Т	Р	Hr	Cr					
Code											
BSC 101	Physics	3	0	2	5	4					
BSC 102	Chemistry	3	0	2	5	4					
ESC 101	Basic Electronics and Electrical		0	2	5	4					
	Engineering										
ESC 102	Fundamentals of programming	3	0	4	7	5					
	Languages										
HSMC	Communication Skills	1	2	0	3	3					
101											
BSC 103	Mathematics	3	0	0	3	3					
	Total	16	2	10	28	23					

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune BSC 101 : Physics

Teaching Scheme	Credit Scheme	Examination Scheme and
Marks		
Lecture: 03 Hours/Week Marks	04	Internal Assessment (TH): 40
Practical: 02 Hours/Week Marks		End Semester (TH): 60

Course Objective:

The objective of this course is:

- 1. To create general understanding regarding basic physical principles involved in living systems.
- To familiarize the student with basic concepts in classical physics such as classical optics used in microscopes and telescopes, mechanics, fluid properties, oscillations and waves, electricity and magnetism
- 3. To introduce them to concepts in modern physics such as production of X-rays, X-ray crystallography, quantum mechanics etc.

Course Outcomes:

Upon successful completion of this course, students will be able to:

CO1: Understand the basic concepts in physics and understand the properties of fluids, viscosity and surface tension.

CO2: Understand the basic properties of solids like elasticity and measure the Modulus by stress and strain curve.

CO3: Understand the concept of Oscillations and different types of waves

CO4: Learn about the optics, diffraction and their types, types of interference

CO5: Demonstrate the calculations of electricity and learn the different laws.

CO6:Demonstrate the concepts in modern physics such as- X-rays, crystallography and quantum Mechanics

CO7: Understand the various laser and their applications.

Prerequisites

This is an introductory course. School level knowledge of physics is sufficient. There are no prerequisites.

Unit I	Newtonian Mechanics and Fluids Properties	(10Hours

Forces in Nature; Newton's laws and its completeness in describing particle motion; Potential energy function; F = - Grad V, Conservative and non-conservative forces, Central forces Surface Tension, Surface Energy, Angleof Contact, Capillarity action, Determination of Surface tension by capillary rise method Viscosity, Coefficient of viscosity, Streamline and turbulent flow, Reynold's number, Stoke's law, Terminal velocity, Determination of _ η ' by falling sphere method.

Mapping of Course Outcomes | CO1

Unit II

Elasticity

Stress and Strain, Hook's law, Str	ess-strain curve, Young's modulus, Determination of Young's module	us				
Mapping of Course Outcomes	CO2					
Unit III	Oscillations and Waves	(06				
Simple harmonic motion, Transverse waves at a boundary, Sound waves: Applications of Ultrasonic waves.	e wave on a string, The wave equation on a string, Reflection and tra Audible, Ultrasonic and Infrasonicwaves, Beats, Doppler effect,	nsmission of				
Mapping of Course Outcomes	CO3					
Unit IV	Optics: Interference Diffraction &	(08				
	Polarization	Hours)				
Introduction to optics, Principles of Newton's rings. Diffraction- Types Microscope and Telescope. Polariza	superposition, Constructive & Destructive Interference, Types of of diffraction, Diffraction grating, Rayleigh's criterion, Resolving tion of light waves, Polaroid, Optical activity.	Interference, g power of				
Mapping of Course Outcomes	CO4					
Unit V	Electricity, Magnetism, Electromagnetic	(07				
	Induction	Hours)				
Calculation of electric field and electric field; Laplace's and Poisson's equation Savart law, Divergence and curl of susing Stokes' theorem Faraday's law Transformers.	Induction ctrostatic potential for a charge distribution; Divergence and curl of ons for electrostatic potential; Heating effect of electric current, Joule tatic magnetic field; vector potential and calculating it for a given m v in terms of EMFproduced by changing magnetic flux; Transforme	Hours) electrostatic t's law , Bio- agnetic field ers, Types of				
Calculation of electric field and electric field; Laplace's and Poisson's equation Savart law, Divergence and curl of susing Stokes' theorem Faraday's law Transformers. Mapping of Course Outcomes	Induction ctrostatic potential for a charge distribution; Divergence and curl of ons for electrostatic potential; Heating effect of electric current, Joule tatic magnetic field; vector potential and calculating it for a given m v in terms of EMFproduced by changing magnetic flux; Transforme CO5	Hours) electrostatic e's law , Bio- agnetic field ers, Types of				
Calculation of electric field and electric field; Laplace's and Poisson's equati Savart law,Divergence and curl of susing Stokes' theorem Faraday's law Transformers. Mapping of Course Outcomes Unit VI	Induction ctrostatic potential for a charge distribution; Divergence and curl of ons for electrostatic potential; Heating effect of electric current, Joule tatic magnetic field; vector potential and calculating it for a given m v in terms of EMFproduced by changing magnetic flux; Transformer CO5 Modern Physics: Xrays, Crystallography,	Hours) electrostatic e's law , Bio- agnetic field ers, Types of (08				
Calculation of electric field and electric field; Laplace's and Poisson's equation Savart law, Divergence and curl of susing Stokes' theorem Faraday's law Transformers. Mapping of Course Outcomes Unit VI	Induction ctrostatic potential for a charge distribution; Divergence and curl of ons for electrostatic potential; Heating effect of electric current, Joule tatic magnetic field; vector potential and calculating it for a given m v in terms of EMFproduced by changing magnetic flux; Transformed CO5 Modern Physics: Xrays, Crystallography, Introduction to Quantum Mechanics	Hours) electrostatic i's law , Bio- agnetic field ers, Types of (08 Hours)				
Calculation of electric field and electric field; Laplace's and Poisson's equation Savart law, Divergence and curl of susing Stokes' theorem Faraday's law Transformers. Mapping of Course Outcomes Unit VI Introduction to X-Rays: Introduction Theory, Properties of Photon, Phote Heisenberg's Uncertaintyprinciple. Theorem Momentum	Induction ctrostatic potential for a charge distribution; Divergence and curl of ons for electrostatic potential; Heating effect of electric current, Joule tatic magnetic field; vector potential and calculating it for a given m v in terms of EMFproduced by changing magnetic flux; Transformed CO5 Modern Physics: Xrays, Crystallography, Introduction to Quantum Mechanics n,Production of X-rays, X-Ray diffractionand its Applications. Plank produced require equation for wave function, Statistical interpretation,	Hours) electrostatic t's law , Bio- agnetic field ers, Types of (08 Hours) c's Quantum s hypothesis, Probability,				
Calculation of electric field and electric field; Laplace's and Poisson's equatis Savart law,Divergence and curl of susing Stokes' theorem Faraday's law Transformers. Mapping of Course Outcomes Unit VI Introduction to X-Rays: Introduction Theory, Properties of Photon, Phote Heisenberg's Uncertaintyprinciple. Theorem Mapping of Course Outcomes	Induction ctrostatic potential for a charge distribution; Divergence and curl of ons for electrostatic potential; Heating effect of electric current, Joule tatic magnetic field; vector potential and calculating it for a given my in terms of EMFproduced by changing magnetic flux; Transformed CO5 Modern Physics: Xrays, Crystallography, Introduction to Quantum Mechanics n,Production of X-rays, X-Ray diffractionand its Applications. Plank totoelectric effect, Wave particle duality of radiation, De Broglie's The Schrodinger equation for wave function, Statistical interpretation, CO6	Hours) electrostatic t's law , Bio- agnetic field ers, Types of (08 Hours) c's Quantum s hypothesis, Probability,				
Calculation of electric field and electifield; Laplace's and Poisson's equatifield; Laplace's and Poisson's equatified; Laplace's and Poisson's equatified; Laplace's and Poisson's equations is using Stokes' theorem Faraday's law Transformers. Mapping of Course Outcomes Unit VI Introduction to X-Rays: Introduction Theory, Properties of Photon, Phote Heisenberg's Uncertaintyprinciple. Theorem Mapping of Course Outcomes Unit VI Mapping of Course Outcomes Unit VII	Induction Etrostatic potential for a charge distribution; Divergence and curl of ons for electrostatic potential; Heating effect of electric current, Joule tatic magnetic field; vector potential and calculating it for a given mean of EMF produced by changing magnetic flux; Transformed CO5 Modern Physics: Xrays, Crystallography, Introduction to Quantum Mechanics n,Production of X-rays, X-Ray diffractionand its Applications. Plankotoelectric effect, Wave particle duality of radiation, De Broglie's The Schrodinger equation for wave function, Statistical interpretation, CO6 Lasers	Hours) electrostatic é's law , Bio- agnetic field ers, Types of (08 Hours) c's Quantum s hypothesis, Probability, (06 Hours)				
Calculation of electric field and electric field; Laplace's and Poisson's equations avart law, Divergence and curl of susing Stokes' theorem Faraday's law Transformers. Mapping of Course Outcomes Unit VI Introduction to X-Rays: Introduction Theory, Properties of Photon, Phatematic Photon, Properties of Lasers, Production mediates and the photon photon, Phatematic Photon, Phatematic Photon, Phatematic Photon, Phatematic Photon, Phatematic Photon, Photon, Phatematic Photon, Ph	Induction Etrostatic potential for a charge distribution; Divergence and curl of ons for electrostatic potential; Heating effect of electric current, Joule tatic magnetic field; vector potential and calculating it for a given my in terms of EMFproduced by changing magnetic flux; Transformed CO5 Modern Physics: Xrays, Crystallography, Introduction to Quantum Mechanics n,Production of X-rays, X-Ray diffractionand its Applications. Plankotoelectric effect, Wave particle duality of radiation, De Broglie's The Schrodinger equation for wave function, Statistical interpretation, CO6 Lasers hanism, Ruby Laser, Helium Neon Laser, applications of Lasers	Hours) electrostatic és law , Bio- agnetic field ers, Types of (08 Hours) c's Quantum s hypothesis, Probability, (06 Hours)				
Calculation of electric field and electifield; Laplace's and Poisson's equatifield; Laplace's and Poisson's equatified; Laplace's and Poisson's equatified; Laplace's and Poisson's equations are surpled with the senters. Theorem Faraday's law Transformers. Theory of Course Outcomes of Photon, Phereisenberg's Uncertaintyprinciple. The Momentum Mapping of Course Outcomes Unit VII Properties of Lasers, Production mediates and the senters of Course Outcomes are sentered by the senters of Course Outcomes are sentered by the senters of the senters	Induction Etrostatic potential for a charge distribution; Divergence and curl of ons for electrostatic potential; Heating effect of electric current, Joule tatic magnetic field; vector potential and calculating it for a given m v in terms of EMFproduced by changing magnetic flux; Transformer CO5 Modern Physics: Xrays, Crystallography, Introduction to Quantum Mechanics n,Production of X-rays, X-Ray diffractionand its Applications. Plankotoelectric effect, Wave particle duality of radiation, De Broglie's The Schrodinger equation for wave function, Statistical interpretation, CO6 Lasers hanism, Ruby Laser, Helium Neon Laser, applications of Lasers CO7	Hours) electrostatic 's law , Bio- agnetic field ers, Types of (08 Hours) c's Quantum s hypothesis, Probability, (06 Hours)				

Methodology

The course will be covered through lectures and supported by practical.

Reference Books:

- 1. Physics by D. Haliday and R. Resnik 5th edition, Wiley Eastern Pub, 2007.
- 2. Perspectives of Modern Physics by A. Beiser, 6th edition, Mc Graw Hill,2003.
- 3. Fundamensls of optics by F. A. Jenkins and H. E. White, 4th edition, McGraw Hill, 1976.
- 4. Optics by A. Ghatak, 3rd edition, Tata Mc Graw Hill, 2006.
- 5. David Griffiths, Introduction to Electrodynamics, 3rd edition, 1999,Prentice Hall
- 6. David Griffiths, Introduction to Quantum Mechanics, 2nd edition, 2005,Prentice Hall

Practical:

- 1. Diffraction Grating: Use of diffraction grafting for determination of wavelength of
- 2. Spectral lining.
- 3. Resolving Power: To determine the resolving power of Microscope ortelescope
- 4. Ultrasonic Interferometer: Determination of velocity of ultrasonic wavesby ultrasonic
- 5. Surface Tension: Determination of the surface tension of a given solution.
- 6. Viscosity: Determination the coefficient of viscosity by Stoke's methodand its
- 7. Practical application.
- 8. Joule's Law: Determine of Joule's constant.
- 9. Determination of wavelength of monochromatic light by Newton's ringsexperiments.

	<u>e ne co-r o mapping mau ix</u>												
CO\PO	PO1	PO2	PO 3	PO 4	P O 5	PO 6	PO7	PO 8	PO9	PO1 0	PO1 1	PO12	
CO1	1	1	2	1	-	-	-	-	-	-	-	-	
CO2	1	2	-	2	-	-	-	-	-	-	-	-	
CO3	2	1	2	1	-	-	-	-	-	-	-	-	
CO4	1	2	-	2	-	-	-	-	-	-	-	-	
CO5	-	-	2	-	-	-	-	-	-	-	-	-	
CO6	-	2	1	2	-	-	-	-	-	-	-	-	

_ _

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune BSC 102: Chemistry

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	04	Internal Assessment (TH): 40 Marks
Practical: 02 Hours/Week		End Semester (TH): 60 Marks

Course Objective:

- 1. The objective of this course is to familiarize the student with the different concepts of physical and organic chemistry.
- 2. The students will learn the structures of organic molecules as: alkanes, alkenes, alkynes, aliphatic and aromatic molecules and the stereochemistry behind the molecules with its importance in day today life
- 3. They would learn the Basic concepts and principles with respect to physical chemistry, the bioenergetics of different reactions and the principles and applications of radioactivity.

Course Outcomes:

The course will enable the student to:

CO1: Analyze microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.

CO2: Rationalize bulk properties and processes using thermodynamic considerations. Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques

CO3: Rationalize periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.

CO4: List major chemical reactions that are used in the synthesis of molecules.

CO5: understand ionization energies and variations in Periodic atoms

CO6: configuration and representation of isomers

CO7: addition, oxidation, elimination and substitution of reaction

Prerequisites:

This is the introductory course and there are no prerequisites.

Unit I

Atomic and molecular structure

(10 Hours)

Schrodinger equation. Particle in a box solutions and their applications for conjugated molecules and nanoparticles. Forms of the hydrogen atom wave functions and the plots of these functions to explore their spatial variations. Molecular orbitals of diatomic molecules and plots of the multicenter orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic. Pi-molecular orbitals of butadiene and benzene and aromaticity.

Mapping of Course Outcomes	CO1					
Unit II	Spectroscopic techniques and applications(07 Hours)					
Principles of spectrosco and rotational spectrosco resonance imaging	py Electronic spectroscopy. Fluorescence and its applications in me opy of diatomic, molecules. Applications. Nuclear magnetic reson	edicine. Vibrational ance and magnetic				
Mapping of Course Outcomes	CO2					
Unit III	Intermolecular forces and potential energy	(04 Hours)				
	surfaces					
Ionic, dipolar and van De energy surfaces of H3, H	er Waals interactions. Equations of state of real gases and critical ph H2F and HCN and trajectories on these surfaces.	enomena. Potential				
Mapping of Course Outcomes	CO3					
Unit IV	Thermo- dynamics	(08 Hours)				
Thermodynamic function energy and emf. Cell por metallurgy through Ellin Mapping of Course	ons: energy, entropy and free energy. Estimations of entropy and otentials, the Nernst equation and applications. Use of free energy and magnams.	free energies. Free y considerations in				
Outcomes						
Outcomes Unit V	Periodic properties	(06				
Outcomes Unit V	Periodic properties	(06 Hours)				
Outcomes Unit V	Periodic properties	(06 Hours)				
Outcomes Unit V Effective nuclear charge periodic table, electronic electronegativity, polarit	Periodic properties e, penetration of orbitals, variations of s, p, d and f orbital energ ic configurations, atomic and ionic sizes, ionization energies, ele zability, oxidation states, coordination numbers and geometries	(06 Hours) ies of atoms in the ectron affinity and				
Outcomes Unit V Effective nuclear charge periodic table, electronic electronegativity, polarit Mapping of Course	Periodic properties e, penetration of orbitals, variations of s, p, d and f orbital energ ic configurations, atomic and ionic sizes, ionization energies, ele zability, oxidation states, coordination numbers and geometries CO5	(06 Hours) ies of atoms in the ectron affinity and				
Outcomes Unit V Effective nuclear charge periodic table, electronic electronegativity, polarit Mapping of Course Outcomes	Periodic properties e, penetration of orbitals, variations of s, p, d and f orbital energic configurations, atomic and ionic sizes, ionization energies, elezability, oxidation states, coordination numbers and geometries CO5	(06 Hours) ies of atoms in the ectron affinity and				
Outcomes Unit V Effective nuclear charge periodic table, electroni electronegativity, polarit Mapping of Course Outcomes Unit VI	Periodic properties e, penetration of orbitals, variations of s, p, d and f orbital energies configurations, atomic and ionic sizes, ionization energies, elezability, oxidation states, coordination numbers and geometries CO5	(06 Hours) ies of atoms in the ectron affinity and (06 Hours)				
Outcomes Unit V Effective nuclear charge periodic table, electronic electronegativity, polarie Mapping of Course Outcomes Unit VI Representations of 3 of symmetry and chiralic conformational analysis	Periodic properties e, penetration of orbitals, variations of s, p, d and f orbital energy ic configurations, atomic and ionic sizes, ionization energies, ele zability, oxidation states, coordination numbers and geometries CO5 Stereo- chemistry dimensional structures, structural isomers and stereoisomers, of ty, enantiomers, diastereomers, optical activity, absolute c Isomerism in transitional metal compounds	(06 Hours) ies of atoms in the ectron affinity and (06 Hours) configurations and onfigurations and				
Outcomes Unit V Effective nuclear charge periodic table, electroni electronegativity, polarit Mapping of Course Outcomes Unit VI Representations of 3 of symmetry and chirali conformational analysis Mapping of Course Outcomes	Periodic properties e, penetration of orbitals, variations of s, p, d and f orbital energy ic configurations, atomic and ionic sizes, ionization energies, ele zability, oxidation states, coordination numbers and geometries CO5 Stereo- chemistry dimensional structures, structural isomers and stereoisomers, of ty, enantiomers, diastereomers, optical activity, absolute c Isomerism in transitional metal compounds CO6	(06 Hours) ies of atoms in the ectron affinity and (06 Hours) configurations and onfigurations and				
Outcomes Unit V Effective nuclear charge periodic table, electronic electronegativity, polarie Mapping of Course Outcomes Unit VI Representations of 3 or symmetry and chiralic conformational analysis Mapping of Course Outcomes Unit VI Representations of 3 or symmetry and chiralic conformational analysis Mapping of Course Outcomes Unit VII	Periodic properties e, penetration of orbitals, variations of s, p, d and f orbital energy ic configurations, atomic and ionic sizes, ionization energies, ele zability, oxidation states, coordination numbers and geometries CO5 CO5 CO5 dimensional structures, structural isomers and stereoisomers, of ty, enantiomers, diastereomers, optical activity, absolute c Isomerism in transitional metal compounds CO6 Organic reactions	(06 Hours) ies of atoms in the ectron affinity and (06 Hours) configurations and onfigurations and				
Outcomes Unit V Effective nuclear charge periodic table, electronic electronegativity, polarit Mapping of Course Outcomes Unit VI Representations of 3 of symmetry and chiralic conformational analysis Mapping of Course Outcomes Unit VII	Periodic properties e, penetration of orbitals, variations of s, p, d and f orbital energy ic configurations, atomic and ionic sizes, ionization energies, ele zability, oxidation states, coordination numbers and geometries CO5 Stereo- chemistry dimensional structures, structural isomers and stereoisomers, of ty, enantiomers, diastereomers, optical activity, absolute c Isomerism in transitional metal compounds CO6 Organic reactions	(06 Hours) ies of atoms in the ectron affinity and (06 Hours) configurations and onfigurations and (05 Hours)				
Outcomes Unit V Effective nuclear charge periodic table, electronic electronegativity, polarit electronegativity, polarit Mapping of Course Outcomes Unit VI Representations of 3 or symmetry and chiralic conformational analysis Mapping of Course Outcomes Unit VI Representations of 3 or symmetry and chiralic conformational analysis Mapping of Course Outcomes Unit VII Introduction to reactions ring openings.	Periodic properties e, penetration of orbitals, variations of s, p, d and f orbital energies configurations, atomic and ionic sizes, ionization energies, elezability, oxidation states, coordination numbers and geometries CO5 Stereo- chemistry dimensional structures, structural isomers and stereoisomers, of ty, enantiomers, diastereomers, optical activity, absolute c, Isomerism in transitional metal compounds CO6 Organic reactions s involving substitution, addition, elimination, oxidation, reduction	(06 Hours) ies of atoms in the ectron affinity and (06 Hours) configurations and onfigurations and (05 Hours) h, cyclization and				

Methodology

The course will be covered through lectures, demonstration and practical.

Reference Books:

- 1. University chemistry, by B. H. Mahan
- 2. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane
- 3. Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 5. Physical Chemistry, by P. W. Atkins
- 6. Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Ed. http://bcs.whfreeman.com/vollhardtschore5e/ default.asp

Practical:

- 1 Determination of surface tension and viscosity
- 2 Spectroscopy
- 3 Measurement of Optical activity.
- 4 Determination of chloride content of water OR Chemical analysis of a salt
- 5 Colligative properties using freezing point depression
- 6 Determination of the rate constant of a reaction
- 7 Determination of cell constant and conductance of solutions
- 8 Potentiometry determination of redox potentials and emfs
- 9 Determination of the partition coefficient of a substance between two immiscible liquids
- 10 Adsorption of acetic acid by charcoal

<u>@The CO-PO Mapping Matrix</u>

CO \P O	PO 1	PO 2	PO 3	PO 4	P O 5	PO 6	PO 7	P O 8	PO 9	PO 10	PO 11	P O 12
CO 1	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	_ 2	2_	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-

Co 7	1	2	2	-	-	-	-	-	-	-	-	-

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune ESC 101: Basic Electronics and Electrical Engineering

Teaching Scheme		Credit Scheme	Examination Sch	eme and Marks
Lecture: 02 Hours/We	ek	03	Internal Assessment (TH	H): 40 Marks
Practical: 02 Hours/W	eek		End Semester	(TH): 60 Marks
Course Objective:				
1. To understand	d the fundamental	s of electronic circuit	constructions.	
2. To learn the f	fundamental laws,	theorems of electrica	al circuits and also toanalyze	them
3. To study the	basic principles of	electrical machines a	nd their performance	
4. To study the	different energy	sources, protective de	evices and their fieldapplica	tions
5. To understand	d the principles a	nd operation of measu	ring instruments andtransdu	cers
Course Outcomes:				
Upon completion of the c CO1: Discuss the	course, the student essentials of elec	s will be able to: tric circuits and analy	sis.	
CO2: Discuss the	basic operation o	f electric machines ar	d transformers	
CO3: Introductio	n of renewable so	urces and common do	mestic loads.	
CO4: Introductio	n to measurement	and metering for elec	tric circuits	
CO5: To underst	and the principles	and operation of me	asuring instruments andtrans	ducers
Prerequisites:				
Basic knowledge	of Electronics Cir	cuits.		
Unit I	Ir	troduction to E	lectronics	(06 Hours)
Evolution of Electronics, components, P-type Sem Current) P-N Junction D condition, V-I characteris Bridge Rectifier.	Impact ofElectro iconductor, N-typ iode: P-N Junctic stics of P-N junct	pnics in industry and peSemiconductor. Cu on diode construction ion Diode, Diode as	in society. Introduction to a rrent in semiconductors (D and its working in forward a switch, Half Wave Rectif	active and passive diffusion and Drift and reverse bias ier, Full wave and
Mapping of Course	CO1			
Outcomes				
Unit II		Transistor and	JPAMP	(08 Hours)
Bipolar Junction Transiste	or: Construction, ty	pe, Operation, V-I Ch	aracteristics, region of operat	tion, BJT as switch
and CE amplifier, Op-amp	p as Inverting ar	nd Non inverting am	plifter, applications of operations	tional amplifier

Mapping of Course	CO2
Outcomes	

Home

Unit III	Number System and Logic Gates	(08 Hours)							
Number System: - Binary, BCD, Octal, Decimal, Hexadecimal De-Morgan's theorem. Basic Gates:- AND, C NOT, Universal Gate- XOR, XN Flip Flop's SR, JK,T and D Introduction to Microprocessor and Microcontrol									
Mapping of Course Outcomes	CO3								
Unit IV	Electrical Circuits Analysis	(06 Hours)							
Ohms Law, Kirchhoff	s Law-Instantaneouspower- series and parallel circuit analysis with res	istive,							
capacitive and inductive Manning of Course	c network - nodal analysis, mesh analysis								
Outcomes									
Unit V	Network theorems	(08 Hours)							
Network theorems - Tl superposition theorem, conversion.	heremins theorem, Norton theorem, maximum power transfertheorem a three phase supply-Instantaneous, Reactive and apparent power-star de	nd elta							
Mapping of Course Outcomes	CO5								
Practicals: 1. Study b) c) 2 Si	of different electronic components. Resistors (Carbon Film, Metal Film, Wire wound, Variable) Capacitors (Electrolytic, Mica, Ceramic, variable) Inductors, transformers d. Relay, switches, and connectors								
a) b) c)	To study different controls of DMM and measurements of parameter AC & DC voltage, current To study controls of CRO, measurements of frequency, phase, AC as DC voltages To study various controls of function generator	rs like nd							
3 St	udy of DC regulated power supply								
4 St P	ly of semiconductor devices, P-N junction Diode. Plot VIcharacteristics of junction diode.								
5 St	udy of single stage BJT common emitter amplifier circuit								
6 Si a. b.	udy of operational amplifier Op-amp IC741 Op-amp as inverting and non-inverting amplifier.								
7 St	udy of digital logic circuits.								
	25								

- Truth table verification of AND, OR, NOT, NAND, NOR a.
- Implement half adder circuit with logic gate ICs. b.
- Verification of super position, Thevenin and Norton's theorem 8
- Study of Series RLC circuit (Power measurement, Phasordiagram) 9
- Study of single phase and three phase transformers 10

<u>@The</u>	<u>e i ne CO-PO Mapping Matrix</u>												
CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12	
со	1	1	2	1	-	-	-	-	-	-	-	-	
CO 2	1	2	-	2	-	-	-	-	-	-	-	-	
CO 3	2	1	2	1	-	-	-	-	-	-	-	-	
CO 4	1	2	-	2	-	-	-	-	-	-	-	-	
CO 5	-	-	2	-	-	-	-	-	-	-	-	-	
CO 6	-	2	1	2	-	-	-	-	-	-	-	-	
Co7	1	2	2	_	_	_	-	-	-	-	-	-	

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune ESC 102: Fundamentals of Programming Languages

Teaching Scheme Lecture: 03 Hours/Week Practical: 04 Hours/Week Credit Scheme

05

Examination Scheme and Marks Internal Assessment (TH): 40 Marks End Semester (TH): 60 Marks

Course Objective:

The objective of the course is

- 1. To familiarize the students with computers and programming concepts.
- 2. Programming module is intended to familiarize them with computer logicand solution of real-world problems using C and C++ programming languages.

Course Outcomes:

At the end of this course, students will be able to:

- CO1: Understand the organization of computers and the basic principles ofComputing
- **CO2**: Deal with the basics problems that arise while using computers
- CO3: Demonstrate the basics of C Programing and their applications
- **CO3**: Demonstrate the basics of object-oriented programming (C++)
- CO4: Apply programming for solving biological problems by logic-basedapproach
- CO5: Understand the different types of array and string
- CO6: Demonstrate the pointer with array and function
- CO7: Understand the structure, union, enumeration
- CO8: Different file handling function

Prerequisites:

The course requires the basic knowledge about the Computer system.

Unit I	Basics of programming & Introduction to C	(08 Hours)
History of computer and Application software and Machine language, High types	d various parts and functions performed by them , Various hards system software, Various functions of operating system, MS-DOS, I level language, Compilation process, An overview of C, C expression	ware of computer, LINUX commands, ns, Operators, Data
Mapping of Course	CO1	
Outcomes		

Unit II	The Decision controls and Control structures	(08 Hours)								
If statements within if, Operators, The Conditio for' loop, Nesting of Lo continue' statement, The	If statements within if, Multiple statements within if, if-else statement, The! operator Hierarchy of Logical Operators, The Conditional Operators. What are Control structures, need of controlstructures, While' Loop, for' loop , Nesting of Loops , Multiple Initializations in the for loop The Odd' Loop, The break' statement, The continue' statement, The do-while' statement, Decisions using switch , Go To Statements									
Mapping of Course Outcomes	Mapping of Course CO2 Outcomes Eunctions Pointers and Structures (08 Hour									
Unit III	Functions, Pointers and Structures	(08 Hours)								
What is a function? Why Use Functions Passing values between functions, Scope offunction. Pointer variables, The pointer Operators, Pointer Expressions, Pointers and Arrays, Initializing Pointers, Pointers to Functions, C's Dynamic Allocation Arrays Structures, Arrays of structures, Passingstructures to functions, Structure Pointers, Unions, Bit-Fields, Enumerations, Typedef										
Mapping of Course Outcomes	CO4, CO6,CO7									
Unit IV	Array & strings	(08 Hours)								
Single-dimension Arrays Two- dimensional Array arrays Whatare Strings? Dimensional Array of Ch	Single-dimension Arrays, Generating aPointer to an array, Passing single dimension, arrays to functions, Strings, Two- dimensional Arrays, Arrays of Strings, Multidimensional Arrays, Array, Initialization, Variable-Length arrays Whatare Strings? More about Strings, Pointers and Strings, Standard Library String functions, Two-Dimensional Array of Characters, Array of pointers to Strings									
Mapping of Course Outcomes	CO5									
Unit V	File Handling in C	(08 Hours)								
Unit V Opening and closing a si stdout and stderr, Stream	File Handling in C tream, open modes, Reading and writing to/from a stream, Predefir manipulation: fgetc(), fputc(), fgets() and fputs() functions	(08 Hours) ned streams: stdin,								
Unit V Opening and closing a s stdout and stderr, Stream Mapping of Course Outcomes	File Handling in C tream, open modes, Reading and writing to/from a stream, Predefir manipulation: fgetc(), fputc(), fgets() and fputs() functions CO7	(08 Hours) ned streams: stdin,								
Unit V Opening and closing a s stdout and stderr, Stream Mapping of Course Outcomes Unit VI	File Handling in C tream, open modes, Reading and writing to/from a stream, Predefir manipulation: fgetc(), fputc(), fgets() and fputs() functions CO7 Introduction To Object- Oriented Programming (C++)	(08 Hours) ned streams: stdin, (08 Hours)								
Unit V Opening and closing a s stdout and stderr, Stream Mapping of Course Outcomes Unit VI Introduction – Procedure – User definedtypes – Fu – Inheritance – Polymor	File Handling in C tream, open modes, Reading and writing to/from a stream, Predefir manipulation: fgetc(), fputc(), fgets() and fputs() functions CO7 Introduction To Object- Oriented Programming (C++) vs. object oriented programming – Data types – control structures – nctions and Pointers – Case study ,Classes and Objects – Operator Ophism and VirtualFunctions – Case study	(08 Hours) ned streams: stdin, (08 Hours) Arrays and Strings Overloading								
Unit V Opening and closing a s stdout and stderr, Stream Mapping of Course Outcomes Unit VI Introduction – Procedure – User definedtypes – Fu – Inheritance – Polymor Mapping of Course Outcomes	File Handling in C tream, open modes, Reading and writing to/from a stream, Predefir manipulation: fgetc(), fputc(), fgets() and fputs() functions CO7 Introduction To Object- Oriented Programming (C++) vs. object oriented programming – Data types – control structures – nctions and Pointers – Case study ,Classes and Objects – Operator Ophism and VirtualFunctions – Case study CO3	(08 Hours) ned streams: stdin, (08 Hours) Arrays and Strings Overloading								
Unit V Opening and closing a s stdout and stderr, Stream Mapping of Course Outcomes Unit VI Introduction – Procedure – User definedtypes – Fu – Inheritance – Polymor Mapping of Course Outcomes Reference Books:	File Handling in C tream, open modes, Reading and writing to/from a stream, Predefir manipulation: fgetc(), fputc(), fgets() and fputs() functions CO7 Introduction To Object- Oriented Programming (C++) vs. object oriented programming – Data types – control structures – nctions and Pointers – Case study ,Classes and Objects – Operator Ophism and VirtualFunctions – Case study CO3	(08 Hours) ned streams: stdin, (08 Hours) Arrays and Strings Overloading								
Unit V Opening and closing a s stdout and stderr, Stream Mapping of Course Outcomes Unit VI Introduction – Procedure – User definedtypes – Fu – Inheritance – Polymor Mapping of Course Outcomes Reference Books: 1. The complet	File Handling in C tream, open modes, Reading and writing to/from a stream, Predefir manipulation: fgetc(), fputc(), fgets() and fputs() functions CO7 Introduction To Object- Oriented Programming (C++) vs. object oriented programming – Data types – control structures – nctions and Pointers – Case study ,Classes and Objects – Operator Ophism and VirtualFunctions – Case study CO3 e reference of C by H. Schildt, 4th edition, Mc Graw Hill,2003.	(08 Hours) ned streams: stdin, (08 Hours) Arrays and Strings Overloading								
Unit V Opening and closing a s stdout and stderr, Stream Mapping of Course Outcomes Unit VI Introduction – Procedure – User definedtypes – Fu – Inheritance – Polymor Mapping of Course Outcomes Reference Books: 1. The complet 2. Let us C By	File Handling in C tream, open modes, Reading and writing to/from a stream, Predefir manipulation: fgetc(), fputc(), fgets() and fputs() functions CO7 Introduction To Object- Oriented Programming (C++) vs. object oriented programming – Data types – control structures – nctions and Pointers – Case study ,Classes and Objects – Operator Ophism and VirtualFunctions – Case study CO3 e reference of C by H. Schildt, 4th edition, Mc Graw Hill,2003. Y. Kanitkar, 15 th edition, BPB Publication, 2017.	(08 Hours) ned streams: stdin, (08 Hours) Arrays and Strings Overloading								
Unit V Opening and closing a s stdout and stderr, Stream Mapping of Course Outcomes Unit VI Introduction – Procedure – User definedtypes – Fu – Inheritance – Polymor Mapping of Course Outcomes Reference Books: 1. The complet 2. Let us C By 3. Data Structu	File Handling in C tream, open modes, Reading and writing to/from a stream, Predefir manipulation: fgetc(), fputc(), fgets() and fputs() functions CO7 Introduction To Object- Oriented Programming (C++) vs. object oriented programming – Data types – control structures – nctions and Pointers – Case study ,Classes and Objects – Operator Ophism and VirtualFunctions – Case study CO3 e reference of C by H. Schildt, 4th edition, Mc Graw Hill,2003. Y. Kanitkar, 15 th edition, BPB Publication, 2017. re Through C by Y. Kanitakar, 2 nd edition, BPB Publication, 2003.	(08 Hours) ned streams: stdin, (08 Hours) Arrays and Strings Overloading								
Unit V Opening and closing a s stdout and stderr, Stream Mapping of Course Outcomes Unit VI Introduction – Procedure – User definedtypes – Fu – Inheritance – Polymor Mapping of Course Outcomes Reference Books: 1. The complet 2. Let us C By 3. Data Structu 4. Understandin	File Handling in C tream, open modes, Reading and writing to/from a stream, Predefir manipulation: fgetc(), fputc(), fgets() and fputs() functions CO7 Introduction To Object- Oriented Programming (C++) vs. object oriented programming – Data types – control structures – nctions and Pointers – Case study ,Classes and Objects – Operator C phism and VirtualFunctions – Case study CO3 e reference of C by H. Schildt, 4th edition, Mc Graw Hill,2003. Y. Kanitakar, 2 nd edition, BPB Publication,2003. notions C by Y. Kanitakar, 4 th edition, BPB Publication,2007.	(08 Hours) ned streams: stdin, (08 Hours) Arrays and Strings Overloading								
Unit V Opening and closing a s stdout and stderr, Stream Mapping of Course Outcomes Unit VI Introduction – Procedure – User definedtypes – Fu – Inheritance – Polymor Mapping of Course Outcomes Reference Books: 1. The complet 2. Let us C By 3. Data Structu 4. Understandin 5. Data Structu	File Handling in C tream, open modes, Reading and writing to/from a stream, Predefir manipulation: fgetc(), fputc(), fgets() and fputs() functions CO7 Introduction To Object- Oriented Programming (C++) vs. object oriented programming – Data types – control structures – nctions and Pointers – Case study ,Classes and Objects – Operator Ophism and VirtualFunctions – Case study CO3 e reference of C by H. Schildt, 4th edition, Mc Graw Hill,2003. Y. Kanitkar, 15 th edition, BPB Publication, 2017. re Through C by Y. Kanitakar, 2 nd edition, BPB Publication,2003. ng Pointers in C by Y. Kanitakar, 4 th edition, BPB Publication,2007. re using C and C++ by A. M. Taneumbam, 2 nd edition, PHI,2017.	(08 Hours) ned streams: stdin, (08 Hours) Arrays and Strings Overloading								

- 7. HM Deitel and PJ Deitel —C++ How to Program^I, Seventh Edition, 2010, Prentice Hall.
- 8. E Balagurusamy, —Object oriented Programming with C++I, Thirdedition, 2006, Tata McGraw Hill.

Methodology:

The course will be covered through lectures, demonstration and practical.

Practical's:

- 1 Introduction to Microsoft Word and Microsoft Power point
- 2 Introduction to Microsoft Excel and MS-DOS commands
- 3 Programs on basic programming in C
- 4 Programs using Decision Controls in C
- 5 Programs using while, do-while and for Loop
- 6 Programs using Case Control Structure, odd loop
- 7 Programs illustrating use of function
- 8 Programs illustrating use of arrays
- 9 Programs using Pointers and Structure
- 10 Programs illustrating use of String
- 11 Programs for file handling in C
- 12 Programs in basic programming in C++
- 13 Basic programs for object-oriented concepts using C++
- 14 Programs for Biological application
 - Finding complement of DNA
 - ORF finding
 - Inverted Repeats
 - Motif finding
 - Translation
 - Transcription

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12	
СО	1	1	2	1	-	-	-	-	-	-	-	-	
CO 2	1	2	-	2	-	-	-	-	-	-	-	-	
CO 3	2	1	2	1	-	-	-	-	-	-	-	-	
CO 4	1	2	-	2	-	-	-	-	-	-	-	-	
СО	-		2		_								

@The CO-PO Mapping Matrix

5												
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2				-	-	-	-	-	-

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune HSMC 101: Communication Skills

	HSMC	101: Communic	ation Skills						
Teaching Scheme	(ne and Marks							
Lecture: 01 Hours/We	ek	03	Internal Assessment (TH End Semester (TH	H): 40 Marks): 60 Marks					
Course Objective:									
1. Understand the role of communication in personal & professional success.									
2. Develop awa	reness of appropriat	te communication s	trategies.						
3. Prepare and	present messages wi	th a specific intent							
4. Analyze a va	riety of communication	tion acts.							
5. Ethically use	e, document and inte	grate source							
Course Outcomes:									
CO3:Understa CO4: Practice CO5: Familia CO6: Underst	and and practice diff and adhere to the 70 rize with different ty and and practice Int	erent techniques of Cs of Communicat pes of Communica erview Etiquettes.	communication ion. ation.						
Unit I		Vocabulary B	uilding	(03 Hours)					
The concept of Word For prefixes and suffixes from abbreviations.	mation, Root words	from foreign langu in English to form	ages and their usein English, derivatives., Synonyms, anto	Acquaintance with nyms, and standard					
Mapping of Course Outcomes	CO1								
Unit II		Basic Writing	g Skills	(03 Hours)					
Sentence Structures, Us coherence Organizing pri	Sentence Structures, Use of phrases and clauses in sentences Importance of proper punctuation, Creating coherence Organizing principles of paragraphs in documents, Techniques for writing precisely								
Mapping of Course Outcomes	CO2								
Unit III	Iden	tifying Comm Writing	on Errors in	(03 Hours)					

Subject-verb agreement Clichés	t, Noun-pronounagreement Misplaced modifiers, Articles, Preposition	nsRedundancies,						
Mapping of Course Outcomes	CO3							
Unit IV	Nature and Style of sensible Writing	(08 Hours)						
Describing, Defining, Clas	ssifying,Providing examples or evidence, Writing introduction and co	onclusion						
Mapping of Course Outcomes	CO4							
Unit V	Writing Practices	(08 Hours)						
Comprehension, Précis W	riting, EssayWriting							
Mapping of Course Outcomes	CO5							
Unit VI	Oral Communication	(08 Hours)						
(This unit involves inter Intonation, Stress and Rh at Workplace, Interviews	active practice sessions in Language Lab) Listening Comprehension hythm, Common Everyday Situations: Conversations and Dialogues , Formal Presentations	on, Pronunciation, s, Communication						
Mapping of Course Outcomes	CO6							
Reference Book:	·							
 a. Practical English Usage. Michael Swan. OUP. 1995. b. Remedial English Grammar. F.T. Wood. Macmillan.2007 c. On Writing Well. William Zinsser. Harper Resource Book. 2001 d. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006. e. Communication Skills Sanjay Kumar and Pushp Lata. Oxford University Press. 2011. f. Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press 								
@The CO-PO Map	pping Matrix							

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
СО	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2				-	-	-	-	-	-
Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune

BSC 103: Mathematic

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	03	Internal Assessment: 40 Marks

End Semester: 60 Marks

Course Objective

The objective of the course is to familiarize the student with basic concepts inmathematics. *Course Outcomes:*

The objective of this course is to familiarize the prospective engineers withtechniques in calculus, multivariate analysis and linear algebra. It aims to equipthe students with standard concepts and tools at an intermediate to advancedlevel that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. The students will learn:

CO1: To apply differential and integral calculus to notions of curvature and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions.

CO2: The tool of power series and Fourier series for learning advanced Engineering Mathematics.

CO3: To deal with functions of several variables that are essential in most branches of engineering.

CO4: The essential tool of matrices and linear algebra in a comprehensive manner.

CO5: To deal with thermos, transformations, and equations.

Prerequisites:

Students should be familiar with school level mathematics to take up this course. In case they do not have mathematics at the 10+2 level they should have cleared the core mathematics in the first semester.

Unit I	Calculus	(06 Hours)								
Evaluate and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas.										
Mapping of Course	CO1									
Outcomes										
Unit II	Calculus	(06 Hours)								
Expansion of Functions: Taylor's series and Maclaurin's Series; Differential Calculus: Indeterminate Forms, L -Hospital's Rule, Evaluation of Limits										
Mapping of Course	CO2									
Outcomes										
Unit III	(10 Hours)									
	24									

Infinite Sequences, Infinite Convergence, Range of conv	Series, Alternating Series, Tests for Convergence, Absolute and Corvergence.	nditional
Mapping of Course Outcomes	CO3	
Unit IV	Multivariable Calculus	(08 Hours)
Partial Derivatives, Euler's Independent Variables; Ma multiplier	Theorem onHomogeneous Functions, ImplicitFunctions, Total Deriv xima and Minima of functions of two variables, Lagrange's metho	vatives, Change of d of undetermined
Mapping of Course Outcomes	CO4	
Unit V	Matrices	(10 Hours)
Rank, Normal Form, Syste Transformations. Eigen va	em of Linear equations, Linear Dependence and Independence, Line llues, Eigen Vectors, Cayley Hamilton Theorem.	ar and Orthogonal
Mapping of Course Outcomes	CO5	
 Reference Book: 1. G.B. Thomas a Reprint, 2002. 2. Erwin kreyszig 2006. 3. Veerarajan T., 4. Ramana B.V., 2010. 5. D. Poole, Line 6. N.P. Bali and Publications, F 7. B.S. Grewal, H 8. Dr. M.Y Gokh Edition. 	and R.L. Finney, Calculus and Analytic geometry, 9 th Edition, Pearso g, Advanced Engineering Mathematics, 9 th Edition, JohnWiley & S Engineering Mathematics for first year, Tata McGraw-Hill,New Dell Higher Engineering Mathematics, Tata McGraw Hill NewDelhi, 11 th ear Algebra: A Modern Introduction, 2 nd Edition,Brooks/Cole, 2005. Manish Goyal, A text book of Engineering Mathematics,Laxmi Reprint. Higher Engineering Mathematics, Khanna Publishers, 36 th Edition, 2 ale, Dr. N.S. Mujumdar Engineering Mathematics-I, NiraliPrakashar	n, Sons, hi, 2008. th Reprint, 2010. h, 8 th
@The CO-PO Mapp	ing Matrix	

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
СО	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2				-	-	-	-	-	-

- 1. Diffraction Grating: Use of diffraction grafting for determination of
- 1. principles and applications of radioactivit

SEMESTER II										
Course	Course Name	L	Т	Р	Hr	Cr				
Code										
ESC 201	Problem Solving by Programming	3	0	4	7	5				
BSC 201	Computational Statistics	3	0	0	3	3				
BSC 202	General Biology	2	1	0	3	3				
ESC 202	Engineering Graphics and Design	1	0	4	5	3				
ESC 203	Engineering Mechanics	3	0	0	3	3				
ESC 204	Project Based Learning –I	0	0	4	4	2				
ESC 205	Workshop and manufacturing	0	0	4	4	2				
	practices-laboratory									
	Total	12	1	16	29	21				

Dr. D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune ESC 201 : Problem Solving by Programming

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	05	Internal Assessment (TH): 40 Marks
Practical: 04 Hours/Week		End Semester (TH): 60 Marks

Course Objective:

Prime objective is to give students a basic introduction to programming and problem solving with computer language Python. And to introduce students not merely to the coding of computer programs, but to computational thinking, the methodology of computer programming, and the principles of good program design including modularity and encapsulation.

- 1. To understand problem solving, problem solving aspects, programming and to know about various program design tools.
- 2. To learn problem solving with computers
- 3. To learn basics, features and future of Python programming.
- 4. To acquaint with data types, input output statements, decision making, looping and functions in Python
- 5. To learn features of Object-Oriented Programming using Python.

Course Outcomes:

On completion of the course, learner will be able to-

CO1: Inculcate and apply various skills in problem solving.

CO2: Choose most appropriate programming constructs and features to solve the problems in diversified domains.

CO3: Exhibit the programming skills for the problems those require the writing of well- documented programs including use of the logical constructs of language, Python.

CO4: Demonstrate significant experience with the Python programdevelopment environment.

CO5: demonstrate with the polymorphism, inheritance, class, object like object oriented programming.

CO6: learn about the file handling and Dictionaries with case studies.

Prerequisites:

Students are expected to have a good understanding of basic computer principles.

Unit I	Problem Solving, Programming and Python	(07 Hours)							
	Programming General Problem Solving Concepts								
Problem solving in everyday life,	types of problems, problem solving with computers, difficulties with	h problemsolving,							
Problem solving aspects, top down	design. Problem Solving Strategies.	1 2,							
Program Design Tools: Algorithm Basics of Python Programming: H	ns, Flowcharts and Pseudocodes, implementation of algorithms. Seatures of Python, History and Future of Python, Writing and execu	ting Python							
program, Literal constants, variable	es andidentifiers, Data Types, Input operation, Comments, Reserved	words,							
Indentation, Operators and expres	sions, Expressions in Python.								
Mapping of Course Outcomes	COI								
Unit II	Decision Control Statements Decision Control	(08 Hours)							
	Statements	1							
Decision control statements, Select	ion/conditional branching Statements: if, if-else, nested if, if elif-e	lse statements.							
continue, pass,else statement used	with loops. Other data types- Tuples, Lists and Dictionary.	ops, The break,							
Mapping of Course Outcomes	CO2								
Unit III	Functions and Modules	(08 Hours)							
Need for functions, Function : define	Need for functions, Function: definition, call, variable scope and lifetime, the return statement. Defining functions, Lambda								
packages in Python, Introduction t	o standard library modules.	s, infoduction to							
Manning of Course	CO3								
Outcomes									
Unit IV	Strings	(07 Hours)							
Strings and Operations- concater	nation, appending, multiplication and slicing. Strings are immutable,	strings formatting							
operator, built in string methods	and functions. Slice operation, ord() and chr() functions, in and the string module	not in operators,							
Mapping of Course Outcomes	CO4								
Unit V	Object Oriented Programming	(08 Hours)							
Programming Paradigms-monolith	ic, procedural, structured and objectoriented, Features of Object-orie	nted Programming							
classes, objects, methods and mes	ssage passing, inheritance, polymorphism, containership, reusability	, delegation, data							
abstraction and encapsulation.	objects class method and salf object class veriables and object ver	ishlas public and							
private members, class methods.	objects, class method and sen-object, class variables and object var	lables, public and							
Mapping of Course Outcomes	CO5								
Unit VI	File Handling and Dictionaries	(08 Hours)							
Files: Introduction, File path, Typ	bes of files, Opening and Closing files, Readingand Writing files. I	Dictionary method.							
Dictionaries- creating, assessing, addingand updating values. Case Study: Studydesign, features, and use of any recent, popular and efficient system developed using Python. (This topic is to be excluded for theory examination).									

Mapping of	of Course	CO6						
Outcomes								
Text Books 1.	s: Reema Thareja, —Pyth University Press, ISBN	non Programming Using Problem Solving Approachl, Oxford 13: 978-0-19-948017-6						
2.	R. Nageswara Rao, — 938605230X, ISBN-13	Core Python Programming , Dreamtech Press;Second edition ISBN-10: 3: 978-9386052308 ASIN: B07BFSR3LL						
Reference	Books:							
1.	R. G. Dromey, —Ho 8131705625, ISBN-13 Conceptsl,	w to Solve it by Computer ^{II} , Pearson Education India; 1 st edition, ISBN- : 978-8131705629 Maureen Spankle, —Problem Solving and Programming						
2.	Romano Fabrizio, —L 1783551712	earning Pythonl, Packt Publishing Limited, ISBN:9781783551712,						
3.	Paul Barry, —Head Fir 5213-482-34	st Python- A Brain Friendly Guidel, SPD O'Reilly, 2nd Edition, ISBN:978-93-						
4.	Martin C. Brown, -I	Python: The Complete Referencel, McGraw HillEducation, ISBN-10:						
	9789387572942, ISBN-13: 978-9387572942, ASIN: 9387572943							
6.	Jeeva Jose, P. Sojan La	l, —Introduction to Computing & Problem Solvingwith PythonI,						
7.	Khanna Computer Boo	ok Store; First edition, ISBN-10: 9789382609810,ISBN-13: 978-938260981						
8.	Brian W. Kernighan an	nd Dennis M. Ritchie, The C Programming Language, Prentice Hall of India						
Practical : 1. Wr em 2. To is c 3. To to : agg div 4. To num 5. To dig 6. To prin 7. To	tite a program to calculate ployee pay professional accept an object mass is calculated ase=mc2 when accept student's five con- and above 40 in each c gregate is 60>= and <75 tision. If aggregate is 4 accept N numbers from mbers. check whether input n tists such that the sumof t accept the number and C me, d) factorialof number accept two numbers from	te salary of employee. Let HRA be 10 % of basic pay and TA be 5% of basic pay. Let tax as 2% of total salary. Calculate net salary payable after deductions. n kilograms and velocity in meters per second and display its momentum. Momentum re m is the mass of the object and c is its velocity. urses marks and compute his/her result. Student is passing if he/she scores marks equal ourse. If student scores aggregate greater than 75%, then the grade is distinction. If then the grade if first division. If aggregate is 50>= and <60, then the grade is second 0>= and <50, then the grade is third division. n user. Compute and display maximum inlist, minimum in list, sum and average of umber is Armstrong number or not. An Armstrong number is an integer with three the cubes of its digits is equal to the number itself. Ex. 371. Compute a) square root of number, b) Square of number, c) Cube of number d) check for or e) prime factors						
/. To nur	accept two numbers fi mbers.	com user and compute smallest divisor and Greatest Common Divisor of these two						

- 8. To accept a number from user and print digits of number in a reverseorder.
- 9. To input binary number from user and convert it into decimal number.
- 10. To generate pseudo random numbers.
- 11. To accept list of N integers and partition list into two sub lists even and odd numbers.

- 12. To accept the number of terms a finds the sum of sine series.
- 13. To accept from user the number of Fibonacci numbers to be generated and print the Fibonacci series. Write a python program thataccepts a string from user and perform following string operations-i. Calculate length of string ii. String reversal iii. Equality check of two strings iii. Check palindrome ii. Check substring
- 14. To copy contents of one file to other. While copying a) all full stopsare to be replaced with commas b) lower case are to be replaced with upper case c) upper case are to be replaced with lower case.
- 15. To count total characters in file, total words in file, total lines in fileand frequency of given word in file. Create class EMPLOYEE for storing details(Name, Designation, gender, Date of Joining and Salary).
- 16. Define function members to compute a) total number of employeesin an 18. organization b) count of male and female employee c)Employee with salary more than 10,000 d) Employee withdesignation —Asst Manager
- 17. Create class STORE to keep track of Products (Product Code, Nameand price). Display menu of all products to user. Generate bill as perorder.
- 18. Program that simulates rolling dice. When the program runs, it willrandomly choose a number between 1 and 6 (Or other integer you prefer). Print that number. Request user to roll again. Set the 20. min and max number that dice can show. For the average die, that means a minimum of 1 and a maximum of 6. Use raspberry pi/or similar kit and python for-
- a) Room Temperature Monitoring System
- b) Motion Detection System
- c) Soil Moisture Sensor
- d) Home Automation System
- e) A robot
- f) Smart mirror or a smart clock.
- g) Smile Detection using Raspberry Pi Camera
- 19. Guess Number: Randomly generate a number unknown to the user. The user needs to guess what that number is. If the user's guess is wrong, the program should return some sort of indication as to how wrong (e.g. the number is too high or too low). If the user guesses correctly, a positive indication should appear.
- 20. Write functions to check if the user input is an actual number, to see the difference between the inputted number and the randomlygenerated numbers, and to then compare the numbers.

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
со	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-

CO 5	-	-	2	-	-	-	-	-	-	-	-	-	
CO 6	-	2	1	2	-	-	-	-	-	-	-	-	

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune BSC 201: Computational Statistics

Teaching Scheme

Credit Scheme

Lecture: 03 Hours/Week

03

Examination Scheme and Marks Internal Assessment: 40 Marks End Semester (TH): 60 Marks

Course Objective:

The objective of this course is to familiarize the students with statistical techniques. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling various problems in the discipline.

Course Outcomes:

The course will enable the student to:

The students will learn:

CO1: The ideas of probability and random variables and various discrete and continuous probability distributions and their properties.

CO2: The basic ideas of statistics including measures of central tendency, correlation and regression.

CO3: The statistical methods of studying data samples.

CO4: Communicate the results of statistical analyses effectively.

CO5: understand method of least squares and Test of significance

CO6: Demonstrate the correlation coefficients

Unit I	Basic Probability	(12 Hours)
Probability spaces, cond variables, the multinomia Bernoulli trials, sums of Variance of a sum, Corre	litional probability, independence; Discrete random variables, I I distribution, Poisson approximation to the binomial distribution, independent random variables; Expectation of Discrete Random elation coefficient, Chebyshev's Inequality.	Independent random infinite sequences of Variables, Moments,

Unit II	Continuous Probability Distributions	(04 Hours)
Outcomes		
Mapping of Course	CO1	

Continuous random variables and theirproperties, distribution functions and densities, normal, exponential and gamma densities.

Mapping of Course	CO2
Outcomes	

	Unit III		Bivariate Distributions	(04 Hours)
Bivariate Bayes'rule.	distributions	and	theirproperties, distribution of sums and quotients, con	ditional densities,
Mapping of Outcomes	of Course	CO3		
	Unit IV		Basic Statistics	(08 Hours)
Measures of and Norma Rank corre	of Central tend 1 - evaluation lation.	lency: Mo of statisti	pments, skewness and Kurtosis - Probability distributions: ical parameters for these three distributions, Correlation	Binomial, Poisson and regression –
Mapping o Outcomes	of Course	CO4		
	Unit V		Applied Statistics	(08 Hours)
Curve fittin curves. Tes difference Mapping Outcomes	ng by the meth st of significant of means, and of Course	od of leas nce: Large l differenc CO5	t squares- fifting of straight lines, second degree parabola e sample test for single proportion, difference of propor e of standard deviations.	s and more general tions, single mean,
	Unit VI		Small samples	(04
			P	Hours)
Test for sin test for goo	gle mean, diff odness of fit ar	erence of d indeper	meansand correlation coefficients, test for ratio of variandence of attributes.	inces - Chi-square
Mapping o Outcomes	of Course	CO6		
Reference 1. 2. 3. 4. 5. 6. Methodolo The co	Erwin Kreys 2006. P. G. Hoel, S Stall. S. Ross, A F W. Feller, An 1968. N.P. Bali and Publications, B.S. Grewal, gy urse will be co	zig, Adva . C. Port a irst Cours Introduct d Manish Reprint, Higher E	anced Engineering Mathematics, 9 th Edition, JohnWiley and C. J. Stone, Introduction to Probability Theory,Univer the in Probability, 6 th Ed., Pearson Education India,2002. ion to Probability Theory and its Applications, Vol.1, 3 rd E Goyal, A text book of Engineering Mathematics,Laxmi Engineering Mathematics, Khanna Publishers, 35 th Edition	& Sons, rsal Book Ed., Wiley, n, 2000.

<u>@The CO-PO Mapping Matrix</u>

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
СО	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2				-	-	-	-	-	-

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune

BSC 202: General Biology

Teaching Scheme	Credit Scheme	Examination Scheme a	and Marks
Lecture: 02 Hours/Week	02	Internal Assessment (TH): 20	Marks
		End Semester (TH): 30 M	Marks
Course Objective:			
The objective of this cours	e is to familiarize the students	with basic conceptsin biology.	
Course Outcomes:			
After studying the course, t CO1: Describe how biolog	the student will be able to: fical observations of 18 th Centur	y that lead to majordiscoveries	
CO2 :Convey that classification criteria, such as morpholog	ation per se is not what biology ical, biochemical andecologica	is all about but highlight the underly	ving
CO3 : Highlight the concept material from parent to offs	ts of recessiveness and dominat	nce during thepassage of genetic	
CO4 : Convey that all form diverse as one can imagine	s of life have the same building	blocks and yet the manifestations ar	e as
CO5: Classify enzymes an	d distinguish between different	mechanisms of enzyme action.	
CO6: Identify DNA as a ge	enetic material in the molecular	basis of informationtransfer.	
CO7: Analyze biological p	processes at the reductionistic le	vel.	
CO8: Identify and classify	microorganisms.		
CO9: Study of identification	on and classification of microbio	blogy.	
Prerequisites:			
Basic school level knowledge in Bio	logy.		
Unit I	Intro	oduction	(04 Hours)

Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that leadto major discoveries.

Mapping of Course Outcomes	CO1	
Unit II	Classification	(04 Hours)

Discuss classification based on (a)cellularity Unicellular or multicellular (b) ultrastructure prokaryotes oreukaryotes. (c) energy and Carbonutilization -Autotrophs, heterotrophs, lithographs (d) Ammonia excretion –aminotelic, uricotelic, ureotelic (e) Habitata- aquatic or terrestrial (e) Molecular taxonomy

Mapping of Course Outcomes	CO2	
Unit III	Genetics	(02 Hours)
Concept of allele. Gene mapping, how genetic material passes from	Geneinteraction, Epistasis. Meiosis and Mitosis be taught as a part of a parent to offspring.	f genetics. Phases
Mapping of Course Outcomes	CO3	
Unit IV	Biomolecules	(04 Hours)
Discuss monomeric units and poly Nucleotides and DNA/RNA. Two	mericstructures. Discuss about sugars, starch and cellulose. Amino a carbon units and lipids.	cids and proteins.
Mapping of Course Outcomes	CO4	
Unit V	Enzymes	(02 Hours)
How to monitor enzyme catalyzed of enzyme action. Enzyme kinetics Mapping of Course Outcomes	reactions. How does an enzyme catalyze reactions. Enzymeclassificates and kinetic parameters. RNA catalysis.	ition. Mechanism
Unit VI	Information Transfor	
	Information Transfer	(04 110015)
DNA as a genetic material. Hierarci of genetic code.	hy of DNA structure from single stranded to double helix to nucleos	somes. Concept
Mapping of Course Outcomes	CO6	
Unit VII	Macromolecular Analysis	(04 Hours)
Proteins- structure and function.Hie as enzymes, transporters, receptors	erarch in protein structure. Primary secondary, tertiary and quaternarys s and structural elements.	structure. Proteins
Mapping of Course Outcomes	CO7	
Unit VIII	Metabolism	(01 Hours)
Exothermic and endothermic versu	sendergonic and exergonic reactions.Concept of Keq and its relatio	n to
Standard free energy Spontaneity	ATPas an energy currency.	
Mapping of Course Outcomes	CO8	
Mapping of Course Outcomes Unit IX	CO8 Microbiology	(01 Hours)

Mapping of Course Outcomes CO9

Reference Books:

- 1) Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd
- 2) Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., John Wiley and Sons
- Principles of Biochemistry (5th Edition), By Nelson, D. L.; and Cox, M. M.W.H. Freeman and Company
- 4) Molecular Genetics (Second edition), Stent, G. S.; and Calender, R.W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher
- 5) Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C. Brown Publishers

Methodology

The course will be covered through lectures and tutorials

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
со	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2				-	-	-	-	-	-

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune

ESC 202: Engineering Graphics & Designing

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 01 Hours/Week	03	Internal Assessment (TH): 40 Marks
Practical: 04 Hours/Week		End Semester (TH): 60 Marks

Course Objective:

Objective of the course are: To Learn basic engineering drawing formats. Learn to take data and transform it into graphics drawings. Learn to sketch and take field dimensions.

Course Outcomes:

On completion of the course, learner will be able to

CO1: Draw the fundamental engineering objects using basic rules and be able to construct the simple geometries.

CO2: Construct the various engineering curves using the drawing instruments.

CO3: Apply the concept of orthographic projection of an object to draw several2D views and its sectional views for visualizing the physical state of the object.

CO4: Apply the visualization skill to draw a simple isometric projection from given orthographic views precisely using drawing equipment.

CO5: Draw the development of lateral surfaces for cut sections of geometrical solids.

CO6: Introduction to development of lateral surfaces and its industrial applications.

Prerequisites:

Since the course is very basic in nature, knowledge of mathematics is required.

Unit I	Fundamentals of Engineering Drawing	(04 Hours)
Need of Engineering Drawing and constructions.	Idesign, Sheet layout, Line types and dimensioning and simple geo	ometrical
Mapping of Course Outcomes	CO1	
Unit II	Introduction to 2D and 3D computer aided drafting packages	(06 Hours)
Evolution of CAD, Importance of C and tools etc. and its applications to	CAD,Basic Commands - Edit, View, Insert, Modify, Dimensioning o construct the 2D and 3D drawings	Commands, setting
Mapping of Course Outcomes	CO2	

Unit III	Engineering Curves	(05 Hours)
Introduction to conic sections and cylinder, rolling curves (Involutes	l itssignificance, various methods to construct the conic sections. H s, Cycloid) and Spiral	elix for cone and
Mapping of Course Outcomes	CO3	
Unit IV	Orthographic Projection	(04 Hours)
Principle of projections, Introducti	on to First and Third angle Projection methods, Orthographic projection	ion of
point, line, plane, solid and machin	ne elements/parts	
	604	
Unit V	Isometric Projection	(06 Hours)
Introduction to isometric projectio given orthographic views	n,oblique projection and perspectiveprojection. Draw the isometric projection	ojection from the
Mapping of Course Outcomes	COS	
Unit VI	Development of Lateral Surfaces	(05 Hours)
Introduction to development of lat cut section of cone, pyramid, pris Mapping of Course Outcomes	eral surfaces and its industrial applications. Draw the development of sm etc.	lateral surfacesfor
Text Books:		
1. Bhatt, N. D. and Panc	hal, V. M., (2016), Engineering Drawingl, CharotarPublication, Anan	d, India
2. K. Venugopal, K, (20)	15), Engineering and Graphics, New AgeInternational, New Delhi	
3. Jolhe, D. A., (2015), Delhi	Engineering Drawing with introduction to AutoCAD, Tata McGraw I	Hill, New
4. Rathnam, K., (2018), Singapore	A First Course in Engineering Drawing, Springer Nature Singapore	Pte. Ltd.,
Reference Books:		
1. Madsen, D. P. and Ma USA	adsen, D. A., (2016), Engineering Drawing and design, Delmar Publis	hers Inc.,
2. Bhatt, N. D., (2018), N	Machine Drawing, Chartor Publishing house, Anand, India	
3. Dhawan, R. K., (2000), A Textbook of Engineering Drawing, S. Chand, New Delhi	
4. Luzadder, W. J. and Introduction to Interac	Duff, J. M., (1992), The Fundamentals of Engineering Drawing: ctive Computer Graphics forDesign and Production, Peachpit Press, U	With an SA
5. Giesecke, F. E., Mitch of engineering graphic	ell, A., Spencer, H. C., Hill, I. L., Loving, R. O., Dygon, J. T., (1990), I cs, McMillan Publishing, USA	Principles
6. Jensen, C., Helsel, J. International, Singapo	D., Short, D. R., (2008), Engineering Drawing and Design ^{II} , McG ore Guidelines for L	Graw-Hill

Practical's:

- a. Draw minimum two problems on each assignment on the A3 size drawingsheet.
- b. Suggested List of Laboratory Experiments/Assignments Assignment
- c. Construct any Engineering Curve by any method Assignment
- d. Orthographic view of any machine element along with sectional view.Assignment
- e. Draw Isometric view for given orthographic views. Assignment
- f. Draw the development of lateral surface of a solid/ truncated solid Assignment
- g. Draw the isometric or Orthographic view of a product/object (For exampleWorkshop Job prepared during the workshop practice or any product developed during the first year session.)

Methodology

The course would be taught through lectures, demonstrations, and practicals.

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
СО	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2			_	-	-	-	-	-	-

Dr	. D. Y. Patil School of Sci	ence &Technology,					
	Dr. D. Y. Patil Vidyape	eth, Pimpri, Pune					
	BT 203: Engineering I	Alechanics					
Teaching Scheme	Credit Scheme	Examination Scheme ar	nd Marks				
Lecture: 03 Hours/Week	eek 03 Internal Assessment (TH): 40 Marks End Semester (TH): 60 Marks						
 Course Objective: The objective of the course is to familiarize the students with the basic concepts of engineering mechanics. <i>Jourse Outcomes:</i> CO1: At the end of the course the students will have sufficient knowledge of mechanical engineering techniques which will help them to implement them in the life sciences. CO2: Principle of statics, Force system, Resolution and composition of forces, Resultant of concurrent, forces. CO3: Types of beams, simple and compound beams, Type of supports andreaction. CO4: Understand Simple Contact friction, Rolling Resistance & Belt Friction CO5: Basic Concepts Equation of motion in Cartesian coordinates. CO6: understand the kinetics Work, power, and energy conservative. 							
I init I	Mod		(06 Hours)				
O III (I	WIOUT	lle 1	(00 110013)				
Introduction, Units and Dimensive Vector operations	sions, Laws of Mechanics, Vectors	– Victorian representation of for	ces and moments,				
Mapping of Course Outcomes	CO1						
Unit II	Modu	ıle 2	(08 Hours)				
Principle of statics, Force system force, Varignon's theorem, resu system, Resultant of parallel ger	m, Resolution and composition of f ltant of parallel forcesystem, Coup neral force system	forces, Resultant of concurrent, for le, Equivalent force couple	prces. Moment of a				
Mapping of Course Outcomes	CO2						
Unit III	Modu	ıle 3	(08 Hours)				
Free body diagram Equilibrium Equilibrium of three forces in a Forces in space, Resultant of co in a space	n of concurrent, parallel forces in a plane, Types of beams, simple ar oncurrent and parallel forces in a sp	a plane Equilibrium of general d compound beams, Type of sup ace, Equilibrium of concurrent a	forces in a plane oports andreaction, and parallel forces				

Mapping of Course	CO3				
Unit IV	Module 4	(04 Hours)			
Frictional Force, Laws of Cou	alomb friction, Simple Contact friction, Rolling Resistance & Belt Fr	iction			
Mapping of Course Outcomes	CO4				
Unit V	Module 5	(07 Hours)			
Kinematics of linear motion- Variable accelerationmotion cur coordinates Equation of motio Mapping of Course Outcomes for Unit V	Basic concepts Equation of motion for constant acceleration Motion rves. Kinematics of curvilinear motion- Basic Concepts Equation of m on in path coordinates Equation of motion in polar coordinates Motion CO5	on under gravity, notion inCartesian n of projectile.			
Unit VI	Module 6	(07 Hours)			
and non- conservative forces Co Coefficient of restitution, Imput Mapping of Course Outcomes	onservation of energy formotion of particle, Impulse, Momentum, Direction Momentum principle of particle.	ect central impact.			
Outcomes Cool Reference Book: 1. Engineering Mechanics, 2 nd ed. — MK Harbola 2. Introduction to Mechanics — MK Verma 3. An Introduction to Mechanics — D Kleppner & R Kolenkow 4. Principles of Mechanics — JL Synge & BA Griffiths 5. Mechanics — JP Den Hartog 6. Engineering Mechanics - Dynamics, 7 th ed JL Meriam 7. Mechanical Vibrations — JP Den Hartog 8. Theory of Vibrations with Applications — WT Thomson Methodology: The course will be covered through lectures supported by practicals.					
@The CO-PO Mapping	Matrix				

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
CO	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2				-	-	-	-	-	-

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune ESC 204: Project Based Learning -I

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Practical: 04 Hours/Week	02	Internal Assessment (TH): 40 Marks
		End Semester (TH): 60 Marks

Course Objective

- 1. To emphasizes learning activities that are long-term, interdisciplinary and student-centric.
- 2. To inculcate independent learning by problem solving with social context.
- 3. To engages students in rich and authentic learning experiences.
- 4. To provide every student the opportunity to get involved either individually or as a group so as to develop team skills and learn professionalism.

Course Outcomes:

CO1: Project based learning will increase their capacity and learning through shared cognition.

CO2: Students able to draw on lessons from several disciplines and apply them in practical way.

CO3: Learning by doing approach in PBL will promote long-term retention of material and replicable skill, as well as improve teachers' and students' attitudes towards learning.

Group Structure:

Working in supervisor/mentor –monitored groups. The students plan, manageand complete a task/project/activity which addresses the stated problem.

- There should be team/group of 5 -6 students
- A supervisor/mentor teacher assigned to individual groups

Selection of Project/Problem:

The problem-based project-oriented model for learning is recommended. The model begins with the identifying of a problem, often growing out of a questionor —wondering. This formulated problem then stands as the starting point forlearning. Students design and analyze the problem within an articulated interdisciplinary or subject frame.

A problem can be theoretical, practical, social, technical, symbolic, cultural and/or scientific and grows out of students 'wondering within different disciplines and professional environments. A chosen problem has to be exemplary. The problem may involve an interdisciplinary approach in both theanalysis and solving phases.

By exemplarity, a problem needs to refer back to a particular practical, scientific, social and/or technical domain. The problem should stand as one specific example or manifestation of more general learning outcomes related to knowledge and/or modes of inquiry.

There are no commonly shared criteria for what constitutes an acceptable project. Projects vary greatly in the depth of the questions explored, the clarity of the learning goals, the content and structure of the activity.

- A few hands-on activities that may or may not be multidisciplinary
- Use of technology in meaningful ways to help them investigate, collaborate, analyze, synthesize and present their learning.
- Activities may include- Solving real life problem, investigation /studyand Writing reports of in depth study, field work.

The institution/head/mentor is committed to assessing and evaluating both student performance and program effectiveness.

Progress of PBL is monitored regularly on weekly basis. Weekly review of thework is necessary. During process of monitoring and continuous assessment AND evaluation the individual and team performance is to be measured. PBL is monitored and continuous assessment is done by supervisor /mentor and authorities.

Students must maintain an institutional culture of authentic collaboration, self-motivation, peer-learning and personal responsibility. The institution/ department should support students in this regard through guidance/orientationprograms and the provision of appropriate resources and services. Supervisor/mentor and Students must actively participate in assessment and evaluation processes.

Group may demonstrate their knowledge and skills by developing a public product and/or report and/or presentation.

• Individual assessment for each student (Understanding individual capacity, role and involvement in the project) Group assessment (rolesdefined, distribution of work, intra-team communication and togetherness) Documentation and presentation Evaluation and Continuous Assessment:

It is recommended that the all activities are to be record and regularly, regularassessment of work to be done and proper documents are to be maintained at college end by both students as well as mentor (you may call it PBL work book).

Continuous Assessment Sheet (CAS) is to be maintained by all mentors/department and institutes

- Recommended parameters for assessment, evaluation and weightage: Idea Inception (5%)
- Outcomes of PBL/ Problem Solving Skills/ Solution provided/ Final product (50%) (Individual assessment and team assessment)
- Documentation (Gathering requirements, design & modeling, implementation/execution, use of technology and final report, other documents) (25%)
- Demonstration (Presentation, User Interface, Usability etc) (10%)
- Contest Participation/ publication (5%)
- Awareness /Consideration of -Environment/ Social /Ethics/ Safety measures/Legal aspects (5%)

PBL workbook will serve the purpose and facilitate the job of students, mentor and project coordinator. This workbook will reflect accountability, punctuality, technical writing ability and work flow of the work undertaken.

Reference Book:

- Project-Based Learning, Edutopia, March 14, 2016. What is PBL?Buck Institute for Education.
- www.schoology.com
- www.wikipedia.org
- www.howstuffworks.com

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
со	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2				-	-	-	-	-	-

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune ESC 205: Workshop & Manufacturing

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Practical: 04 Hours/Week	02	Internal Assessment (TH): 40 Marks
		End Semester (TH): 60 Marks

Course Objective

- 1. To understand the construction and working of machine tools and functions of its parts.
- 2. To develop the skill through hands-on practices using hand tools, power tools, machine tools in manufacturing and assembly shops leading to understanding of production processes.
- 3. To understand workshop layout and safety norms.

Course Outcomes:

Upon completion of this course, the students will gain knowledge of the different manufacturing processes which are commonly employed in theindustry, to fabricate components using different materials.

Prerequisites:

This subject requires basic knowledge of Mathematics & Engineering Graphics.

Course Description: Practical Details

*Minimum eight experiments to be conducted out of 10.

- 1. Mandatory briefing on shop-floor safety
- 2. Demonstration and working of center lathe, Demonstration on various functions of lathe parts: Headstock, Tailstock, Carriage, Lead screw, All geared Mechanism, Apron mechanism etc.
- 3. Demonstration of Lathe operations: Step turning and facing, drilling operation on a Mild Steel cylindrical job on center lathe. Understanding the concept of speed, feed and depth of cut.
- 4. Demonstration of Drilling machine Demonstration on construction of Radial drilling machine, Tool holding devices, Concept of speed, feed anddepth of cut.
- 5. Demonstration on Milling machine Demonstration on construction, table movements, indexing and tooling of milling machine.
- 6. Demonstration of Shaper/Grinding machine (Any one) Shaper: Crank and slotted link mechanism, Work feed mechanism Grinding: Surface grinder/Cylindrical grinding machine, Mounting of grinding wheel
- 7. Term work includes one job of Carpentry Introduction to woodworking, kinds of woods, hand tools & machines, Types of joints, wood turning. Pattern making, types of patterns and its allowances.

- 8. Term work to include one job involving fitting to size, male-female fitting with drilling and tapping operation on Mild Steel plate; Introduction to marking, cutting and sawing, sizing of metal, shearing, Concept of fits and interchangeability, selection of datum and measurements.
- 9. Term work to include one utility job preferably using sheet metal (e.g. Tray, Funnel etc.) with riveting/welding/brazing/soldering (at least one temporary and one Permanent joint either using resistance welding/Arc welding); Introduction to sheet metal operations: punching, blanking, bending, drawing.
- 10. Prepare a Layout of the workshop.
- 11. Collection of information about safety norms in any one of the following type of industry: Metalworking/Chemical/Cement/Pharmaceuticals/Defense/Atomic energy/Aerospace/Marine/Construction/Railway etc.

Methodology:

The course will be covered through practicals supported by the theoreticalpart.

Reference Book:

- 1. John, K. C., (2010), Mechanical Workshop Practice, Prentice Hall Publication, New Delhi
- 2. Hazra and Chaudhary, Workshop Technology-I & II, Media promoters & Publisher Pvt. Ltd

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO12
со	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2	_	_	_	-	-	-	-	-	-

SEMESTER III						
Course Code	Course Name	L	Т	Р	Hr	Cr
BSC 301	Discrete Structure	3	0	0	3	3
PCC-AI 301	Data Structures and Algorithms	3	0	4	7	5
PCC-AI 302	Software Engineering & Project Management	3	0	4	7	5
PCC-AI 303	Database Management Systems	3	0	4	7	5
PCC-AI 304	Project Based Learning-II	0	1	4	5	3
HSMC 201	Universal Human Values-II	2	1	0	3	3
	Total	14	2	16	32	24

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune BSC 301: Discrete Structure

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	03	Internal Assessment (TH): 40 Marks
Practical: 00 Hours/Week		End Semester (TH): 60 Marks

Course Objective:

- 1. To learn the fundamental concepts like set, relations, functions, graph, coding theory.
- 2. To understand the related operations and terminologies in context of problem by applying suitable set, function, and relation models to real instances.
- 3. To use simple programming statements and expressions to demonstrate different solutions/approach.
- 4. To understand use of set theory, graph theory, algebraic structure.
- 5. To formulate the problems, solve them, use formal proof techniques, and explain reasoning.
- 6. Apply recursive functions and solve recurrence relations
- 7. To learn to express algorithmic ideas mathematically.

Course Outcomes:

Upon successful completion of this course, students will be able to:

CO1: To identify set, discrete numerical functions.

CO2: To understand the various properties of algebraic structures.

CO3: To apply combinatorial problems using basic computing principles.

CO4: To determine critical thinking, analytical reasoning, and problem-solving abilities.

CO5: To interpret data and solve problems, use appropriate mathematical and statistical concepts and operations.

CO6: To apply set, proposition in problem solving.

CO7: To utilize algebraic structure in solving real world problem

Prerequisites

Basic knowledge of fundamental mathematics is required.

Unit I

Sets and Propositions

(8 Hours)

Sets, set combinations, finite and infinite sets, countably infinite sets, inclusion and exclusion principle, multi-sets Propositions, Conditional Propositions, Logical Connectivity, Prepositional Calculus, Universal and Existential Quantifiers, Standard Forms, Proof Methods, Mathematical Induction

Mapping of Course	CO1					
Outcomes						
Unit II	Relations and Functions	(07 Hours)				
Binary Relationship Properties, Relationship severance Warshall's algorithm, Job scheduling problem using discrete numeric functions and generating functions. Homogeneous Solutions, Linear Recurrence Relations with Constant Coefficients, and Recurrence Relations						
Mapping of Course Outcomes	CO2					

Unit III

(08 Hours)

Home

The structure of algebra, Algebraic Systems, Semi Groups, Monoids, Groups, Homomorphism and Normal Subgroups, and Congruence relations, Rings, Integral Domains and Fields, Graphs and their properties – Degree, Connectivity, Path, Cycle – Sub Graph –Isomorphism – Eulerian and Hamiltonian Walks –Rooted Trees, Trees and Sorting.

Mapping of Course CO3 Outcomes

Unit IV

Graph Theory

(08 Hours)

(07 Hours)

Basic terminology, graph representation in computer memory, multi-graphs and weighted graphs, Subgraphs, Isomorphic graphs Operations on graphs, paths and circuits, Hamiltonian and Euler paths and circuits, shortest path in weighted graphs (Dijkstra's algorithm), factors of a graph, planer graph and Traveling salesman problem, Graph Coloring

Mapping of Course CO4

Unit V

Outcomes

Basic terminology and characterization of trees, Prefix codes and optimal prefix codes, binary search trees, Tree traversal, spanning trees, Fundamental Trees and cut sets, Minimal Spanning trees, Kruskal's and Prim's algorithms for minimal spanning trees, The Max flowMin Cut Theorem (Transport network).

Trees

Mapping of Course CO5

Outcomes	

Unit VI	Coding Theory	(05 Hours)

Coding theory, Polynomial Rings and polynomial Codes, Galois Theory –Field Theory and Group Theory.

Mapping of Course CO6, CO7 Outcomes

Learning Resources

Methodology

The course will be covered through lectures Chalk & Board, videos and PPT.

Reference Books:

- Kenneth H. Rosen, "Discrete Mathematics and its Applications: with Combinatorics and Graph Theory", 7th Edition, Tata McGraw –Hill Education Pvt. Ltd., 2015.
- 2. J.P. Tremblay and R. Manohar, "Discrete Mathematical Structure with Applications to Computer Science", Tata Mc Graw Hill Education (India) Edition 1997.
- 3. Norman L. Biggs, "Discrete Mathematics", 2nd Edition, Oxford University
- Narsingh Deo, "Graph theory with applications to Engineering and Computer Science", Prentice Hall Inc., Englewood Cliffs, N.J., 1974.
- 5. Susanna S. Epp, "Discrete Mathematics with Applications", 4th edition, Brooks/Cole, Cengage Learning, 2010.

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
со	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune PCC-AI 301: Data Structures & Algorithms

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	05	Internal Assessment (TH): 40 Marks
Practical: 04 Hours/Week		End Semester (TH): 60 Marks

Course Objective:

- 1. To understand the basic concepts in data structure.
- 2. To discuss various algorithmic strategies to solve real life problems.
- 3. To acquaint the learner various data searching and sorting techniques.
- 4. To identify and use the appropriate data structure for various real life problems using computer languages.
- 5. To understand the concepts of linear, non-linear data structures with its complexities.
- 6. To understand and efficiently apply various data structures such as stacks, queues, linked lists, trees and graphs for solving various computing problems using Python programming language.

Course Outcomes:

Upon successful completion of this course, students will be able to:

CO1: To understand the need of data structures.

CO2: To learn to apply the algorithm complexity techniques for various estimations.

CO3: To use organised data structure to solve various problem statements.

CO4: To develop the solutions to social issues using NP Complete theory using Python

CO5: To distinguish the use of various structures in solving problems.

CO6: To understand the usage of appropriate data structures to implement algorithms.

Prerequisites:

Students must have knowledge of programming language, basics of mathematics and ability to solve problem. Students also must have a good command on C & Python Programming.

Unit I	(06 Hours)								
Algorithm characteristics, Algorithm design tools, pseudo code and flowchart, Asymptotic notation complexity Recursion and iteration, recurrence equation, Master's theorem recurrence relationships. Need of Data Structure, Types of Data Structure and Abstract Data types.									
Mapping of Course	CO1								
Outcomes									
Unit II	Linear Data Structures	(08 Hours)							
Arrays based Linear Dat	a Structure: Array storage, sparse arrays; Transpose, addition	on, and multiplication							
of sparse matrices, Stack	cs and Queues and their applications, multiple stacks, queue	es in an array.							
Mapping of Course	CO2								
Outcomes									
Unit III	Non-Linear Data Structures	(08 Hours)							

Singly, Doubly & Circ queues. linked lists base	ular Linked Lists; representation, operations, application d polynomial addition	s, linked stacks and							
Mapping of Course Outcomes	CO3								
Unit IV	Advanced Data Structures	(07 Hours)							
Trees, Basic concepts a traversal techniques, so	and definitions of a tree and binary tree and associated term me more operations on binary trees, Heaps, heapsort.	inology, Binary tree							
Mapping of Course Outcomes	CO4								
Unit V	Searching & Sorting Techniques	(08 Hours)							
Searching techniques: Bubble, Merge sort, Qu Mapping of Course Outcomes	CO5	Insertion, Selection,							
Unit VI	NP-Hard and NP Complete Problems	(08 Hours)							
Definitions, Cook's Theo	rem, NP complete Problems, NP Hard Scheduling problems, Cas	se studies							
Mapping of Course Outcomes	CO6								
Methodology The course will be cover	red through lectures and supported by practical.								
Reference Books: 1. E Horowitz and S Press, Hyderabac	 Reference Books: 1. E Horowitz and S. Sahni: Fundamentals of Data Structures in C, Second Edition, Universities Press, Hyderabad. 								
2. R.L. Kruse: Data	Structures & Program Design in C, PHI.	1025							
4. Byron S. Gottfrie Schaum's Outlin	 D.F. Knuth: The art of Computer Programming Vol 1, Narosa Publications, 1985. Byron S. Gottfried & J K Chhabra: Theory and Problems of Programming with C Language, Schaum's Outlines Series, TMH, 2005. 								
 5. David Griffiths, 1 6. David Griffiths, 1 	Introduction to Electrodynamics, 3 rd edition, 1999, Prentice Introduction to Quantum Mechanics, 2 nd edition, 2005, Pren	Hall ntice Hall							
 Y Daniel Liang, 8. Benjamin Baka, 9. Bance D. Necais 	"Introduction to Programming using Python", Pearson. David Julian, "Python Data Structures and Algorithms", Page "Data Structures and Algorithms using Python" Wiley S	ckt Publishers,2017.							
10. Martin Jones, "P	ython for Complete Beginners", 2015.	rucent Luition.							

Practicals:

- 1. Write Python programs for implementing the following searching techniques. a. Linear search b. Binary search c. Fibonacci search
- 2. Write Python programs for implementing the following sorting techniques to arrange a list of integers in ascending order. a. Bubble sort b. Insertion sort c. Selection sort
- 3. Write Python programs for implementing the following sorting techniques to arrange a list of integers in ascending order. a. Quick sort b. Merge sort
- 4. Write Python programs to a. Design and implement Stack and its operations using List. b. Design and implement Queue and its operations using List.
- 5. Write Python programs for the following: a. Uses Stack operations to convert infix expression into postfix expression. b. Uses Stack operations for evaluating the postfix expression
- 6. Write Python programs for the following operations on Single Linked List. (i) Creation (ii) insertion (iii) deletion (iv) traversal b. To store a polynomial expression in memory using single linked list
- 7. Write Python programs for the following operations on Circular Linked List. (i) Creation (ii) insertion (iii) deletion (iv) traversal
- 8. Write Python programs for the following: Uses functions to perform the following operations on Double Linked List. (i) Creation (ii) insertion (iii) deletion (iv) traversal in both ways
- 9. Write a Python program to implement Stack using linked list.
- 10. Write a Python program to implement Linear Queue using linked list
- 11. Write Python programs to implement the following graph traversal algorithms: a. Depth first search. b. Breadth first search
- 12. Write a Python program to perform the following: a. Create a binary search tree. b. Traverse the above binary search tree recursively in pre-order, post-order and in-order. c. Count the number of nodes in the binary search tree

CO∖ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
со	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2		_	_	-	-	-	-	-	-

@The CO-PO Mapping Matrix

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune

PCC-AI 302: Software Engineering & Project Management

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	05	Internal Assessment (TH): 40 Marks
Practical: 04 Hours/Week		End Semester (TH): 60 Marks
Course Objective:		
1. To understand the fundament	al of software engineeri	ng
2. To discuss about the requirer	nent analysis and design	using various tools.
3. To differentiate the role of so	ftware developer and so	ftware tester.
4. To illustrate the use of COCO	OMO models for project	s cost estimation.
5. To provide a working knowle	edge of estimating, desig	n, testing, and quality management strategies
for big software developmen	t projects.	
6. To conceptualize the Softwa	re Development Life Cy	cle (SDLC) models.
Course Outcomes:		
Upon successful completion of this	course, students will be	able to:
CO1: To understand the nee	d of software engineerin	g and its various models.

CO2: To interpret the phases of Software Development using agile methodology.

CO3: To classify various Lifecycle models, requirement analysis and specifications.

CO4: To understand preparation of SRS document, Design Concepts.

CO5: To understand and demonstrate software coding, software testing for a given set of problem

CO6: To familiarize Project Management framework and Tools.

CO7: To apply Unified Modelling Language to transform end-user needs into system and software requirements, and to structure the requirements in a Software Requirements Document (SRD).

Prerequisites:

Students must have a knowledge of fundamentals of software programming.

Unit I	Introduction								
Importance and Emergence of Software Engineering Feasibility Study, Requirement Analysis, Design,									
Implementation, Testing, and Maintenance phases of software development Software Life Cycle									
Models: Waterfall, I	terative, Prototyping, Spiral, and Agile - Compare and contrast in	te cycle models.							
Mapping of Course	CO1								
Outcomes									
Unit II	Requirements Analysis and Design	(08 Hours)							
Process of analysis, Requirement specification, ideal SRS properties, SRS document structure, etc.									
Diagrams of Data Flow - Software Architecture and Architecture Views: What Role Do They Play? -									

Diagrams of Data Flow - Software Architecture and Architecture Views: What Role Do They Play? -Software Project Planning Software Design - Software Design Concepts - Complexity Metrics for Function-Oriented Design - Complexity Metrics for Object-Oriented Design - A well-thought-out design. Use Case Approach. SRS Case study, Software Estimation: Size Estimation: Function Point (Numerical). Cost Estimation: COCOMO (Numerical), COCOMO-II (Numerical). Types of Requirements, Feasibility Study, Requirement Analysis and Design: DFD, Data Dictionary

Mapping of Course Outcomes	CO2								
Unit III	Software Project Planning & Management	(06 Hours)							
Business Case, Project selection and Approval, Project charter, Project Scope management: Scope definition and Project Scope management, Creating the Work Breakdown Structures, Scope Verification, Scope Control, Methods for estimating project time and cost, Resource Management,									
Mapping of Course Outcomes	CO3								
Unit IV	Project Scheduling	(08 Hours)							
Relationship between Degree of Rigor & 7 Planning Purchases a Sellers, Outsourcing: 7 Mapping of Course Outcomes	people and Effort: Staffing Level Estimation, Effect of schedule Task set selector, Project Schedule, Schedule Control, CPM (N and Acquisitions, Planning Contracting, Requesting Seller Res The Beginning of the outsourcing phenomenon, Types of outsour CO4	Change on Cost, Numerical), Basic ponses, Selecting cing relationship							
Unit V	Agile Methodology	(07 Hours)							
Classification of Agile Team Interactions – E Mapping of Course Outcomes	e Methods – Agile Manifesto and Principles – Agile Project Ma thics in Agile Teams CO5	nagement – Agile							
Unit VI	Business Continuity & Disaster Management	(07 Hours)							
Introduction to Disast	er Recovery and Business Continuity, Nature and Causes of Disa	sters, Business							
Mapping of Course Outcomes	CO6								
Methodology: The course will be	e covered through lectures and supported by practical.								
 Reference Books: Software Engined Managing Inform publication. Inform publication. Software Engine publication. Software Publication. 	ering, 5th and 7th edititon, by Roger S Pressman, McGraw Hill p mation Technology Project, 6edition, by Kathy Schwalbe, C ormation Technology Project Management by Jack T Marche eering 3rd edition by KK Agrawal, Yogesh Singh, New A ware Engineering Project Management by Richard H. Tha	ublication. Cengage Learning wka Wiley India Age International yer Wiley India							

7. Walker Royce, "Software Project Management", Addison-Wesley, 1998

Practicals:

Laboratory Assignments:

1. Formulation of a problem statement.

2. Documentation for the Software Requirement Specification Document, Design Documents, and Documentation for the Testing Phase.

- 3. Documentation relating to Software Configuration Management and Risk Management.
- 4. Research and application of any CASE tool for the design phase
- 5. Using any Design phase CASE tools to complete the design.
- 6. Create unit testing and integration testing test cases.
- 7. Create test cases for a variety of white-box and black-box testing methods.

Mini Project documentation and/or implementation- Consider any one system given below in order to implement a mini project documentation.

Set of Systems for above lab assignments:

- 1. Online hotel booking systems
- 2. Stock Market Risk Analysis
- 3. Hospital Management System
- 4. Shopping Mall Inventory Management
- 5. Student Attendance Management System

1. Create Project Plan

- ✓ Specify project name and start (or finish) date.
- ✓ Identify and define project tasks.
- ✓ Define duration for each project task.
- \checkmark Define milestones in the plan
- ✓ Define dependency between tasks
- ✓ Define project calendar.
- ✓ Define project resources and specify resource type
- \checkmark Assign resources against each task and baseline the project plan

2. Execute and Monitor Project Plan

- ✓ Update % Complete with current task status.
- ✓ Review the status of each task.
- ✓ Compare Planned vs Actual Status
- ✓ Review the status of Critical Path
- ✓ Review resources assignation status
- 3. Generate Dashboard and Reports
- ✓ Dashboard Project Overview
- ✓ Cost Overview
- ✓ Upcoming Tasks
- ✓ Resource Reports
- ✓ Over-allocated Resources
- ✓ Resource Overview
- ✓ Cost Reports
- ✓ Earned Value Report
- ✓ Resource Cost Overview
- ✓ Task Cost Overview
- ✓ Progress Reports
- ✓ Critical Tasks

- ✓ Milestone Report
- ✓ Slipping Tasks

@The CO-PO Mapping Matrix

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
СО	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2				-	-	-	-	-	-

TITLE OF THE COURSE: Discrete Structure

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PCC-AI 303: Database Management Systems

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	05	Internal Assessment (TH): 40 Marks
Practical: 04 Hours/Week		End Semester (TH): 60 Marks

Course Objective:

- 1. To understand the fundamental concepts and the applications of Database Management Systems.
- 2. To acquire the skillset to use flexible databases for real applications.
- 3. To get familiar with Data Collection and Design techniques.
- 4. To design a Database Management Systems for scalable projects.
- 5. To relate different DB languages like MySQL, Noe4J, Riak, MongoDB.
- 6. To understand the relational database design principles.

Course Outcomes:

Upon successful completion of this course, students will be able to:

- CO1: To analyze and design the basic elements of a relational database management system.
- CO2: To learn to normalise the databases using single value normalization.

CO3: To identify the relevant data models for problems.

- **CO4**: To design and evaluate entity relationship and convert entity relationship diagrams into RDBMS and formulate SQL queries on the respect data into RDBMS and formulate SQL queries on the data.
- **CO5**: To interpret the query evaluation and optimization techniques.
- CO6: To understand NoSQL Database.

Prerequisites:

Basic knowledge of Data Structures and Algorithms, Discrete Mathematics is required.

Unit I

Introduction to Database

(06 Hours)

Database Concepts, Database System Architecture and Data Modeling: Data Models, Basic Concepts, entity, attributes, relationships, constraints, keys. E-R and EER diagrams: Components of E-R Model, conventions, converting E-R diagram into tables, EER Model components, converting EER diagram into tables, legacy system model. Relational Model: Basic concepts, Attributes and Domains, Codd's Rules. Relational Integrity: Domain, Entity, Referential Integrities, Enterprise Constraints, Schema Diagram. Relational Algebra: Basic Operations, Selection, projection, joining, outer join, union, difference, intersection, Cartesian product, division operations (examples of queries in relational algebraic using symbols).

Mapping of Course	CO1	
Outcomes		
Unit II	Data Collection	(06 Hours)

Data Processing - Data collection; Data preparation; Training a model on the data; Evaluation of the model performance ; Data visualization techniques and inferences - scatter plot, scatter matrix, histogram, box plot.

Mapping of Course Outcomes	CO2	
Unit III	Database Design &SQL	(08 Hours)
Functional Dependency Valued Normalization: dependency preservation Form. Introduction to S DCL, SQL Operators, 7 using Views, Indexes, 1 Predicates and Joins, Se Aggregate Functions, N Queries	y, Purpose of Normalization, Data Redundancy and Update Ano 1NF, 2NF, 3NF, BCNF. Decomposition: lossless join decompo on, Multi valued Normalization (4NF), Join Dependencies and th QL: Characteristics and advantages, SQL Data Types and Liter Tables: Creating, Modifying, Deleting, Views: Creating, Droppi Nulls SQL DML Queries: SELECT Query and clauses, Set Ope et membership, Tuple Variables, Set comparison, Ordering of T Nested Queries, Database Modification using SQL Insert, Update	malies, Single sition and ne Fifth Normal als, DDL, DML, ng, Updating rations, uples, e and Delete
Mapping of Course Outcomes	03	
Unit IV	Query Processing and Database transactions	(06 Hours)
Query Processing: Over Pipelining algorithm. Tr of Transactions, Concep Aborts, Recoverable and assertions, roles and pri Programming in MYSQ Mapping of Course	rview, Measures of query cost, Evaluation of expression, Ma ansaction: Basic concept of a Transaction, Transaction Manage of of Schedule, Serial Schedule, Serializability: Conflict and d No recoverable Schedules. Concept of Stored Procedures, C vileges Programmatic SQL: Embedded SQL, Dynamic SQL, L. CO4	terialization and ment, Properties View, Cascaded ursors, Triggers Advanced SQL
Outcomes		1
Unit V	Concurrency Control	(07 Hours)
Concurrency Control: Techniques. Recovery Tuning, Query Optimiz	Need, Locking Methods, Deadlocks, Time-stamping Methods, Methods: Shadow-Paging and Log-Based Recovery, Checkpoin action	and Optimistic ts, Performance
Mapping of Course	C05	
Unit VI	NoSQL databases	(07 Hours)
Introduction, Overview, Databases, Column-orio databases using Apache databases using Riak, C programming languages Mapping of Course Outcomes	and History of NoSQL Databases – The Definition of the Four ented NoSQL databases using Apache HBASE, Column-o Cassandra NoSQL Key/Value databases using MongoDB, No araph NoSQL databases using Neo4J, NoSQL database develo Future Trends for NoSQL databases CO6	Types of NoSQL priented NoSQL SQL Key/Value opment tools and
1 ext BOOKS: 1. Raghurama Kr Hill, New Del 2. Elmasri Navat	ishnan, Johannes Gehrke , Database Management Systems, 3rd editi hi,India te, Fundamentals of Database Systems, Pearson Education,India.	on, Tata McGraw

Reference Books:

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan (2005), Database System Concepts, 5th edition, McGraw-Hill, New Delhi,India.
- 2. Peter Rob, Carlos Coronel (2009), Database Systems Design, Implementation and Management, 7thedition

Methodology:

The course will be covered through lectures, audio- visual tools, DB tools and supported by practical.

Practical's:

Assignments from all Groups (A, B, C) are compulsory.

Group- A:

- 1. Draw E-R diagram and convert entities and relationships to relation table for a given scenario. a. Two assignments shall be carried out i.e. consider two different scenarios (eg. bank, college)
- 2. Install and configure client and server for MySQL and MongoDB (Show all commands and necessary steps for installation and configuration).
- 3. Perform the following: a. Viewing all databases, creating a Database, Viewing all Tables in a Database, Creating Tables (With and Without Constraints), Inserting/Updating/Deleting Records in a Table, Saving (Commit) and Undoing (rollback)
- 4. Perform the following: a. Altering a Table, Dropping/Truncating/Renaming Tables, backing up / Restoring a Database.
- 5. For a given set of relation schemes, create tables and perform the following Simple Queries, Simple Queries with Aggregate functions, Queries with Aggregate functions (group by and having clause), Queries involving- Date Functions, String Functions, Math Functions Join Queries- Inner Join, Outer Join Subqueries- with IN clause, With EXISTS clause.
- 6. For a given set of relation tables perform the following a. Creating Views (with and without check option), Dropping views, Selecting from a view.
- 7. Write a Pl/SQL program using FOR loop to insert ten rows into a database table.
- 8. Given the table EMPLOYEE (EmpNo, Name, Salary, Designation, DeptID) write a cursor to select the five highest paid employees from the table.
- 9. Illustrate how you can embed PL/SQL in a high-level host language such as C/Java and demonstrates how a banking debit transaction might be done.
- 10. Given an integer i, write a PL/SQL procedure to insert the tuple (i, 'xxx') into a given relation.
- 11. Study the Riak database and its uses. Also elaborate on building and installing of Riak.

Group B-

MongoDB/Apache Cassandra Queries:

- 1. Design and Develop MongoDB/Apache Cassandra Queries using CRUD operations. (Use CRUD operations, SAVE method, logical operators etc.).
- 2. MongoDB/Apache Cassandra Aggregation and Indexing: Design and Develop MongoDB Queries using aggregation and indexing with suitable example using MongoDB.
- 3. MongoDB/Apache Cassandra Map reduces operations: Implement Map reduces operation with suitable example using MongoDB.
- 4. Database Connectivity: Write a program to implement MongoDB database connectivity

Note* - Teachers can take the flexibility to use any other advanced tools Instead of MongoDB/Apache Cassandra

Group C-

Using the database concepts covered in Group A and Group B, develop an application with following details: 1. Follow the same problem statement decided in Assignment -1 of Group A.

2. Follow the Software Development Life cycle and other concepts learnt in Software Engineering Course throughout the implementation.

3. Develop application considering:

- Front End : Java/Perl/PHP/Python/Ruby/.net/any other language
- Backend : MongoDB/MySQL/Oracle
- 4. Test and validate application using Manual/Automation testing.

5. Student should develop application in group of 2-3 students and submit the Project Report which will consist of documentation related to different phases of Software Development Life Cycle:

- Title of the Project, Abstract, Introduction
- Software Requirement Specification
- Conceptual Design using ER features, Relational Model in appropriate Normalize form
- Graphical User Interface, Source Code
- Testing document
- Conclusion.
 - •

<u> </u>												
CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
со	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2					-	-	-	-	-	-

@The CO-PO Mapping Matrix

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PCC-AI 304: Project Based Learning-II

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 0 Hours/Week	03	Internal Assessment (TH): 40 Marks
		End Semester (TH): 60 Marks

Course Objective:

- 1. To emphasizes learning activities that are long-term, inter-disciplinary and student centric.
- 2. To engages students in rich and authentic learning experiences.
- 3. To provide every student the opportunity to get involved either individually or as a group so as to develop team skills and learn professionalism.
- 4. To develop an ecosystem this may promote entrepreneurship and research culture among the students.

Course Outcomes:

- **CO1**: To solve real life problems by applying knowledge.
- CO2: To analyze alternative approaches, apply and use most appropriate one for feasible solution.
- CO3: To understand basics of IT Project management
- CO4: To accept and meet challenges in the real world, mirroring what professionals do every day.
- CO5: To classify software applications and identify unique features of various domains
- **CO6**: To promote long-term retention of material and replicable skill, as well as improve teachers' and students' attitudes towards learning through learning by doing approach in PBL.

Prerequisites

Basic knowledge of problem-based learning is required

Course Contents Preamble:

Along with traditional classroom teaching and laboratory work-based learning, project-based learning has been introduced with the goal of motivating students to study by working in groups (3 to 4 students per group) courteously to achieve a better learning experience.

Students may work on a problem that is theoretical, practical, or both in order to find the solution to an any real world problem. It might be social, technological, symbolic, cultural, or scientific, and it stems from students' curiosity.

Project-based learning is an instructional approach designed to give students the opportunity to develop knowledge and skills through engaging projects set around challenges and problems they may face in the real world. PBL, is more than just projects. With PBL students "investigate and respond to an authentic, engaging, and complex problem, or challenge" with deep and sustained attention. PBL is "learning by doing." The truth is, many in education are recognizing we live in a modern world sustained and advanced through the successful completion of projects. In short, If students are prepared for success in life, we need to prepare them for a project-based world. It is a style of active learning and inquiry-based learning. (Reference: Wikipedia). Project based learning will also redefine the role of teacher as mentor in learning

process. Along with communicating knowledge to students, often in a lecture setting, the teacher will also to act as an initiator and facilitator in the collaborative process of knowledge transfer and development. The PBL model focuses the student on a big open-ended question, challenge, or problem to research and respond to and/or solve. It Brings what students should academically know, understand, and be able to do and requires students to present their problems, research process, methods, and results.

Assessment Scheme:

Group may demonstrate their knowledge and skills by developing a public product and/or report and/or presentation.

1. Individual assessment for each student (Understanding individual capacity, role and involvement in the project)

2. Group assessment (roles defined, distribution of work, intra-team communication and togetherness)

3. Documentation and presentation Evaluation and Continuous Assessment

4. It is recommended that all activities should to be recorded regularly, regular assessment of work need to be done and proper documents need to be maintained at college end by both students as well as mentor (PBL work book). Continuous Assessment Sheet (CAS) is to be maintained by all mentors/department and institutes.

Recommended parameters for assessment/evaluation and weightage:

1. Idea Inception and Awareness /Consideration of -Environment/ Social /Ethics/ Safety measures/Legal aspects (10%)

2. Outcomes of PBL/ Problem Solving Skills/ Solution provided/ Final product (Individual assessment and team assessment) (40%)

3. Documentation (Gathering requirements, design &modelling, implementation/ execution, use of technology and final report, other documents) (15%)

4. Demonstration (Presentation, User Interface, Usability) (20%)

5. Contest Participation/ publication (15%) PBL workbook will serve the purpose and facilitate the job of students, mentor and project coordinator. It will reflect accountability, punctuality, technical writing ability and work flow of the work undertaken.

Note:

• While planning for the assessment, choose a valid method based on your context. It should be able to understand by both the students as well as the faculty.

• The student group must follow the principles of Software Engineering (Scoping out the problem, the solution implementation and related documentation).

• Researching the problem and outlining various approaches is key here and should be emphasized by the tutor and the mentor.

• Aspects of design thinking (from the point of view of the person facing the problem) are very important. Students should not jump into the technology aspects first.

• The team can follow the principles of Agile Software Development. The weekly meetings could be used as a Scrum meeting.

• The tutor & mentor should actively help the students to scope the work and the approach. They must validate the technology choices

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
со	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2		_		-	-	-	-	-	-

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune HSMC 201: Universal Human Values -II

Teaching Scheme

Lecture: 02 Hours/Week

Credit Scheme

Examination Scheme and Marks Internal Assessment: 40 Marks End Semester: 60 Marks

HUMAN VALUES COURSES:

During the Induction Program, students would get an initial exposure to human values through Universal Human Values – I. This exposure is to be augmented by this compulsory full semester foundation course.

Course Objective

The objective of the course is four-fold:

1. To development of a holistic perspective based on self- exploration about themselves (human being), family, society and nature/existence.

2. To understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence

3. To strengthening of self-reflection.

4. To development of commitment and courage to act.

PRE-REQUISITES: None. Universal Human Values 1 (Desirable)

COURSE TOPICS: The course has 28 lectures and 14 practice sessions in 5modules:

The objective of this course is to familiarize the prospective engineers withtechniques in calculus, multivariate analysis and linear algebra. It aims to equipthe students with standard concepts and tools at an intermediate to advancedlevel that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. The students will learn:

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

1. Purpose and motivation for the course, recapitulation from Universal Human Values-I.

2. Self-Exploration–what is it? - Its content and process; "Natural Acceptance" and Experiential Validation- as the process for self-exploration.

3. Continuous Happiness and Prosperity- A look at basic Human Aspirations

4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority.

5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario 6. Method to fulfil the above human aspirations: understanding and living in harmony at various levels. Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking.

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

1. Understanding human being as a co-existence of the sentient "I" and the material "Body".

2. Understanding the needs of Self ("I") and "Body" - happiness and physical facility.

3. Understanding the Body as an instrument of "I" (I being the doer, seer and enjoyer).

4. Understanding the characteristics and activities of "I" and harmony in "I".

5. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail.

6. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease.

Module 3: Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

1. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship

2. Understanding the meaning of Trust; Difference between intention and competence

3. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship

4. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals

5. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family. Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students" lives.

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence 1. Understanding the harmony in the Nature

2. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature.

3. Understanding Existence as Co-existence of mutually interacting units in all-pervasive space.

4. Holistic perception of harmony at all levels of existence.

5. Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on Professional Ethics

1. Natural acceptance of human values

2. Definitiveness of Ethical Human Conduct

3. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order.

4. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.

5. Case studies of typical holistic technologies, management models and production systems

6. Strategy for transition from the present state to Universal Human Order: a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers b) At the level of society: as mutually enriching institutions and organizations

7. Sum up. Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions e.g. to discuss the conduct as an engineer or scientist etc.

Text Book:

1.Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Reference Book:

1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal

9. Rediscovering India - by Dharampal

10. Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi

11. India Wins Freedom - Maulana Abdul Kalam Azad

12. Vivekananda - Romain Rolland (English)

13. Gandhi - Romain Rolland (English)

MODE OF CONDUCT (L-T-P-C 2-1-0-3 or 2L: 1T:0P 3 credits):

Lectures hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them. Tutorial hours are to be used for practice sessions While analyzing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self- observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values. It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8- day FDP on Universal Human Values is deemed essential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation.

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
со	1	1	2	1	-	-	-	-	-	-	-	_
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
СО	-	2	1	2	_	_	_	_	_	_	_	

<u>@The CO-PO Mapping Matrix</u>

6										
Co7	1	2	2		-	-	-	-	-	-

SEMESTER IV						
Course Code	Course Name	L	Т	Р	Hr	Cr
PCC-AI 401	Artificial Intelligence	3	0	4	7	5
PCC-AI 402	Digital Logic Design and Processor Architecture	3	0	4	7	5
PCC-AI 403	Computer Networks	3	0	4	7	5
PCC-AI 404	R Programming	2	0	4	6	4
PCC-AI 405	Foundations of Data Science	3	0	4	7	5
	Total			20	34	24

Dr. D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PCC-AI 401: Artificial Intelligence

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	05	Internal Assessment (TH): 40 Marks
Practical: 04 Hours/Week		End Semester (TH): 60 Marks

Course Objective:

- The objective of this course is:
- 1. To understand the concepts of Artificial Intelligence (AI).
- 2. To understand strength of and weakness of searching algorithms.
- 3. To learn and compare the searching techniques for AI applications.
- 4. To acquaint with the various knowledge representation & experts' systems.
- 5. To understand basic probability notations in artificial Intelligence/ Game theory.
- 6. To acquaint with the fundamentals of knowledge presentations and reasoning.

Course Outcomes:

On completion of the course, learner will be able to-

- CO1: To understand the fundamentals of Artificial Intelligence
- CO2: To design smart system using different search strategies of Artificial Intelligence

CO3: To analyze various basic probability notations, game theory

CO4: To apply various algorithms for Artificial Intelligence application development

- CO5: To implement Artificial Intelligence solutions using logical reasoning
- CO6: To analyze the knowledge presentation and expert systems

Prerequisites:

Students needs to have basic knowledge of linear algebra, vector, matrix, probability, Propositional Logic & python programming.

Unit I	Introduction	(06 Hours)
--------	--------------	------------

Introduction: History & overview of Artificial Intelligence, Different Definitions, Problem Solving Strategies, Applications, Physical Symbol System Hypothesis, production systems, Characteristics of production, Agents and Environments – Concept of rationality – Nature of environments – Structure of agents.

Mapping of Course	CO1						
Outcomes							
Unit II	Searching Techniques	(07 Hours)					
Uninformed Search, dept Search, A* Search, Memo (Hill-Climbing Search, Si	Uninformed Search, depth first search , breadth first search, Heuristic Search Strategies (Greedy Best First Search, A* Search, Memory Bounded Heuristic Search) Evolutionary algorithms Local Search Algorithms (Hill-Climbing Search, Simulated Annealing Search, Local Beam Search)						
Mapping of Course Outcomes	CO2						
Unit III	Basic Probability Notation	(08 Hours)					

Inference Using Full Joint Distribution, Independence, Bayes' Rule and it's Use The Planning Problem, Planning with State Space Search, Planning Graphs, Efficient Representation of Conditional Distribution, Exact Inference, Approximate Inference Extending Probability to First Order Representations Alternatives for Uncertain Reasoning.

Mapping of Course	CO3			
Outcomes				
Unit IV	Game Playing	(08 Hours)		
Constraint Societation Problems (CSP) constraint managetion health shine ecouch for CSP level couch for				

Constraint Satisfaction Problems(CSP), constraint propagation, backtracking search for CSP, local search for CSP, structure of CSP, Minimax & Alpha-Beta Pruning Algorithm, Imperfect Real-time decisions, Knowledge Based Agents, Example, Propositional Logic, Reasoning Patterns in Propositional Logic, Syntax and semantics of First Order Logic, Inference in First Order Logic Knowledge Base Reasoning Systems for Categories (Semantic Networks, Description Logics), Reasoning with default Information Acting under uncertainty

Unit V	Formalized & Propositional Logic	(06 Hours)
Mapping of Course Outcomes	CO4	

Formalized symbolic logic: Propositional logic-first order predicate logic, wff conversion to clausal form, inference rules, the resolution principle, Dealing with inconsistencies and uncertainties, fuzzy logic. Probabilistic Reasoning Structured knowledge, graphs, frames and related structures, Knowledge organization and manipulation. Matching Techniques, Knowledge organizations, Management.

Mapping of Course Outcomes	CO5	
Unit VI	Knowledge Representation and Expert Systems	(08 Hours)
TT 1 1		• • • • •

Knowledge representation, Natural Language processing, Pattern recognition, expert systems, introduction to machine learning Case Study: Sentiment Analysis, Case Study: Object Recognition. Ontological engineering

Mapping of Course	CO6
Outcomes	
Methodology	

Methodology

The course will be covered through lectures, NPTEL course cntents, PPTs and supported by practical.

Reference Books:

- 1. Artificial Intelligence: Elaine Rich, Kevin Knight, Mc-GrawHill.
- 2. Introduction to AI & Expert System: Dan W.Patterson, PHI.
- 3. Artificial Intelligence by Luger (Pearson Education)
- 4. Artificial Intelligence, A Modern Approach. Stuart Russell and Peter Norvig.

 Thomas Haslwanter, "An Introduction to Statistics with Python with Applications in the Life 6. Sciences", Springer International Publishing Switzerland 2016, ISBN 978-3-319- 28315-9, ISBN 978-3-319-28316-6 (eBook)
 Peter Bruce and Andrew Bruce, "Practical Statistics for Data Scientists", First Edition, O'Reilly Media, ISBN 978-1-491-95296-2

8. Allen B. Downey, "Think Stats", Second Edition, O'Reilly Media, ISBN: 978-1-491- 90733-7

Practical:

- 1. Study & list tuple, set, dictionary, classes, inheritance in Python
- 2. Study and understand simple reflex and Model Based Agent
- 3. Implement graph in Python for profit or loss in banking application
- 4. Describe the given problem statement using PEAS description.
- 5. Implement basic searching algorithm for given AI problem
- 6. Write a program to solve 8 Queens' problem
- 7. Implement memory bounded $A^* \& A^*$ algorithm for given problem.
- 8. Implement Alpha Beta Tree search.
- 9. Implement classical planning algorithm
- 10. Solve Robot Obstacle/transversal problem means end analysis.

												_
CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
со	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune

PCC-AI 402: Digital Logic Design and Processor Architecture

Teaching Scheme	Credit Scheme	Examination Scher	ne and Marks			
Lecture: 02 Hours/Wee	ek 05	Internal Assessment (TH): 40 Marks			
Practical: 04 Hours/We	Practical: 04 Hours/Week End Semester (TH): 60 Marks					
Course Objective:						
 Course Objective: To present a problem oriented introductory knowledge of Digital circuits and its applications. To study number systems and develop skills for design and implementation of combinational logic circuits and sequential circuits To understand the functionalities, properties, and applicability of Logic Families. To introduce programmable logic devices and ASM chart and synchronous state machines. To learn the basics of microprocessor. To study number systems and develop skills for design and implementation of combinational logic circuits and sequential circuits and sequential circuits. To learn the basics of microprocessor. To study number systems and develop skills for design and implementation of combinational logic circuits and sequential circuits. Course Outcomes: CO1: To learn the basics of combinational as well as sequential logic. CO2: To simplify Boolean Expressions using K Map. CO3: To design and implement combinational circuits. CO4: To design and implement sequential circuits. CO5: To develop simple real-world application using ASM and PLD. CO6: To choose appropriate logic families IC packages as per the given design specifications CO7: To explain organization and architecture of computer system CO8: To comprehend the treatment of sequential circuits and state machines. CO9: To learn how to analyze the performance of digital circuit. 						
Drama anii itaa						
Basic knowledge of digital	l electronics is required					
Unit I	Fundamentals of Digit	al Techniques &	(06 Hours)			
	Minimization 7	Cechnique	· · · ·			
Number System, Booleau	Logic, Truth Tables, Logic Gates, U	niversal Gates, Laws of Boole	an algebra. De-			
Morgan's theorem, Min t condition. Sign Magnitud	erm, Max term, POS, SOP, K-Map, Si le Representation, Quine Mc-Clunky 1	mplification by Boolean theorem Method	rems, don't care			
Mapping of Course	CO1,CO2					
Outcomes						
Unit II	Combinationa	l circuit	(06 Hours)			
The Half adder, the full adder, Subtractor circuit. Multiplexer de-multiplexer, decoder, BCD to seven segment Decoder, encoders, set-reset laches, D-Flip-Flop, R-S Flip-Flop, J-K Flip-flop, Master slave Flip flop, edge triggered flip-flop, T flip-flop, Code Converter such as BCD to Ex-3 and Binary to grey code converter Combinational IC, such as 74153 74151, 7486						
Mapping of Course Outcomes	CO3					
Unit III	Sequential Circu	iits Design	(08 Hours)			
Synchronous/Asynchronou	us counter Operation, Up/down svn	chronous counter, application	1 of counter, Serial			
in/Serial out shift register	Serial in/Serial out shift register. Seri	al in/Serial out shift register,	Serial in/parallel out			
shift register, parallel in/ pa	arallel out shift register, parallel in/Ser	ial out shift register, Bi-directi	onal register, Moore			
and Mealy State diagram	and State Table Design Procedure.					

Mapping of Course	CO4 CO5						
Outcomes	004,005						
Unit IV	Introduction to Computer Architecture	(06 Hours)					
Computer architecture, for of the Computer – Opera MIPS Addressing.	unctional Units – Basic Operational Concepts – Performance – Instru- tions, Operands – Instruction representation – Logical operations – o	uctions: Language decision making –					
Mapping of Course	CO6						
Outcomes							
Unit V	Processor Architecture	(08 Hours)					
Microprocessor architect Implementation Scheme Hazards – Exceptions.	Microprocessor architecture(8086 or 80386) A Basic MIPS implementation – Building a Data path – Control Implementation Scheme – Pipelining – Pipelined data path and control – Handling Data Hazards & Control Hazards – Exceptions.						
Mapping of Course Outcomes	C07						
Unit VI	Parallel Processing	(06 Hours)					
Flynn's classification – SIS core processors and other Warehouse Scale Compute	SD, MIMD, SIMD, SPMD, and Vector Architectures – Hardware mult Shared Memory Multiprocessors – Introduction to Graphics Processi ers and other Message-Passing Multiprocessors.	ithreading – Multi ing Units, Clusters					
Mapping of Course	CO8						
Outcomes							
Methodology							

The course will be covered through lectures videos and PPT.

Reference Books:

- 1. Digital Fundamentals by Morris and Mano, PHI Publication
- 2. Fundamental of digital circuits by A.ANANDKUMAR, PHI Publication
- 3. Digital Fundamentals by FLOYD & JAIN, Pearsons Publication
- 4. Fundamentals of Logic Design by Charles H. Roth Thomson

Practical:

- 1. To Realize Full Adder/ Subtractor using a) Basic Gates and b) Universal Gates
- 2. Design and implement Code Converters-Binary to Gray and BCD to Excess-3
- 3. Flip Flop Conversion: Design and Realization
- 4. Design of 2 bit and 3 bit Ripple Counter using MS JK flip-flop.
- 5. Study of Shift Registers (SISO, SIPO, PISO, PIPO)
- 6. Realization of Boolean Expression for suitable combination logic using MUX 74151 / DMUX 74154
- 7. To Verify the truth table of two bit comparators using logic gates
- 8. Design & Implement Parity Generator

@The CO-PO Mapping Matrix												
CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
со	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2				-	-	-	-	-	-

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune **PCC-AI 403: Computer Networks**

Teaching Scheme

Credit Scheme 05

Examination Scheme and Marks Internal Assessment: 40 Marks End Semester (TH): 60 Marks

Lecture: 03 Hours/Week Practical: 04 Hours/Week

Course Objective:

The objective of this course is:

- 1. To get a basic understanding of networking standards, protocols, and technology.
- 2. To learn various framing, error control, flow management, and routing techniques.
- 3. To understand the role of protocols at different layers of the protocol stack. To get knowledge in network programming.
- 4. To analyze the contents in the layers using simulation tools.
- 5. To design and implement routing algorithms.
- 6. Using Modern Tools, demonstrate LAN and WAN protocol behavior.
- 7. Using Application, Transport, and Network Layer Protocols, examine data flow between peers in an IP network.
- 8. Demonstrate basic switch and router configuration.

Course Outcomes:

On completion of the course, student will be able to-

CO1: To analyse the needs of a certain organisational structure to determine the best networking architecture, topologies, transmission channels, and technologies.

CO2: To demonstrate concerns with design, flow, and error control.

CO3: Analyse data flow utilising the Application, Transport, and Network Layer Protocols in the TCP/IP paradigm.

CO4: To demonstrate how computer network capabilities, selection, and usage can be applied to various sectors of the user community. Using appropriate standards and technology, illustrate Client-Server architectures and prototypes.

CO5: To showcase various routing and switching strategies

Prerequisites

Student should have a fundamental understanding of programming and digital electronics, computer organizations.

Unit I	Introduction	(6 Hours)

Basics of Networks: - Definition, Need, Applications, Network Topologies, BUS, STAR, MESH, Hybrid: Definition, Advantages & Disadvantages, Applications OSI Reference Model: Diagram, Working & Significance of Each Layer. Protocol Basics: Definition, Types of Protocols, Usage of Various Protocols, Networking Components (Hardware): Cables & Connectors (Coaxial, UTP/STP, Fiber Optics, Cat(x)Cables), Switches (Unmanaged, Smart Web Managed, Full Managed), Hardware/Software Firewall, Study of UTM, Wireless Routers DSL/ADSL – Latest Examples and Usage.

Mapping of Course	CO1	
Outcomes		
Unit II	Physical Layer	(07 Hours)

Introduction to LAN, MAN, WAN, PAN, Ad-hoc Network, Network Architectures: Client-Server, Peer-to-Peer, Distributed, and SDN, OSI Model, TCP/IP Model, OSI Model, TCP/IP Model, Star and hierarchical topologies; Layers, Transmission Mediums: CAT5, 5e, 6, OFC, and Radio Spectrum, Network Devices: Bridge, Switch, Router, and Access Point, Manchester and Differential Manchester Encodings; IEEE802.11: Frequency Hopping (FHSS) and Direct Sequence; Direct sequences

Mapping of Course CO2

Unit III

Outcomes

Data Link Layer

Services to the Network Layer, Framing, Error Control, and Flow Control are all design issues. Parity Bits, Hamming Codes (11/12-bits), and Unrestricted Simplex, Stop and Wait, and Sliding Window Protocol are examples of flow control protocols. Pure and Slotted ALOHA, CSMA, WDMA, IEEE 802.3 Standards and Frame Formats, CSMA/CD, Binary Exponential Back -off algorithm, Fast Ethernet, Gigabit Ethernet, IEEE 802.11a/b/g/n and IEEE 802.15 and IEEE 802.16 Standards, Frame formats, CSMA/CA.

Mapping of Course	CO3					
Outcomes						
Unit IV	Network Layer	(08 Hours)				
Switching techniques, IP Protocols: Distance Vect Wireshark: RIP, OSPF, I DSR	Protocol, IPv4 and IPv6 addressing schemes, Subnetting, NAT, CID or, Link State, Path Vector, Routing in Internet using Graphical N 3GP, Congestion control and QoS, , MPLS, Mobile IP, Routing in N	R, ICMP, Routing letwork System 3, MANET : AODV,				
Mapping of Course Outcomes	CO4					
Unit V	Transport Layer	(08 Hours)				
Services, Berkley Sockets, Addressing, Connection establishment and Port Numbers, Connection release, Flow control and buffering, Multiplexing, TCP, TCP Timer management, TCP Congestion Control, Real Time Transport protocol (RTP), Stream Control Transmission Protocol (SCTP), Quality of Service (QoS), Differentiated services, TCP and UDP for Wireless.						
Outcomes						
Unit VI	Application Layer ((08 Hours)				
Domain Name System (I FTP, TELNET, Dynamic	ONS), Hyper Text Transfer Protocol (HTTP), Email: SMTP, MIME, Host Control Protocol (DHCP), Simple Network Management Protocol	, POP3, Webmail, ocol (SNMP).				
Mapping of Course Outcomes	CO4					
Methodology The course will be co Reference Books:	overed through lectures, MOOCs courses and supported by practicals	3.				
 Andrew S. Tenenbaun Fourauzan B., "Data C 	n, "Computer Networks", PHI, ISBN 81-203-2175-8. Communications and Networking", 5th Edition, Tata McGraw- Hill, F	Publications, ISBN:				

- 0 07 058408 2. Kurasa Basa "Commuter Networking a Ten Daver Annrasch Fasturing the Internet", Baseson ISB
- Kurose, Ross "Computer Networking a Top-Down Approach Featuring the Internet", Pearson, ISBN-10: 0132856204 2.
- 4. Matthew S. G, "802.11 Wireless Networks", O'Reilly publications, ISBN: 81-7656-992-5
- 5. C. Siva Ram Murthy and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols" Prentice

Home

(08 Hours)

Hall, ISBN-10: 8131706885; ISBN-13: 978-8131706886

 Holger Karl and Andreas Willing, "Protocols and Architectures for Wireless Sensor Networks", Wiley India, ISBN: 9788126533695 5. Eldad Perahia, Robert Stacey, "Next Generation Wireless LANs", Cambridge, ISBN-10: 1107016762; ISBN-13: 978-1107016767

Practical :

- 1. Create a point-to-point network with three nodes and duplex links between them. Set the queue size, change the bandwidth, and count how many packets are dropped.
- 2. Send ping messages/trace routes over a network with six nodes and count the number of packets lost due to congestion.
- 3. Create an Ethernet LAN with n nodes, various traffic nodes, and a congestion window for each source and destination.
- 4. Simulate the implementation of a simple ESS and transmitting nodes in a wire-free LAN and determine the performance in terms of packet transfer.
- 5. Test GSM performance on NS2/NS3 (using the MAC layer) or an analogous environment.
- 6. Implement CDMA on NS2/NS3 and examine its performance
- 7. Using CRC-CCITT, write a software to detect errors in code (16- bits).
- 8. Using the bellman-ford technique, create a software to discover the shortest path between vertices.
- 9. Create a client-server software that instructs the client to send the file name and instructs the server to return the contents of the requested file if it exists, using TCP/IP sockets.
- 10. Create a client/server datagram socket programme that displays messages typed on the server side on the client side (use Cisco Packet Tracer / NS-3, any other).

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
со	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2				-	-	-	-	-	-

@The CO-PO Mapping Matrix

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune

PCC-AI 404: R Programming

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 02 Hours/Week	03	Internal Assessment (TH): 40 Marks
Practical: 04 Hours/Week		End Semester (TH): 60 Marks

Course Objective:

The objective of the course is to familiarize the students with basic concept in R Programming.

- 1. To analysis data for the purpose of exploration using Descriptive and Inferential Statistics.
- 2. To understand Probability and Sampling Distributions and learn the creative application of Linear Regression in multivariate context for predictive purpose.
- 3. To define suitable data analysis workflows by interpreting simple R scripts
- 4. To summarize basic statistics used in data analysis and interpreting simple R programs.

Course Outcomes:

Upon completion of this course students will be able to:

CO1: To install, Code and Use R Programming Language in R Studio IDE to perform basic tasks on Vectors, Matrices and Data frames.

CO2: To describe key terminologies, concepts and techniques employed in Statistical Analysis.

CO3: To define, Calculate, Implement Probability and Probability Distributions to solve a wide variety of problems.

CO4: To conduct and Interpret a variety of Hypothesis Tests to aid Decision Making.

CO5: To understand, Analyse, Interpret Correlation and Regression to analyse the underlying relationships Between different variables.

CO6: Understand the concept of structured query language, xml and function.

Prerequisites:

Knowledge of C programming is required, basic understanding of Statistics & Data Structure

Unit I	Introduction	(06 Hours)

What exactly is R? R and R-Studio, Installation, R-Studio, Overview Functioning in the Console Arithmetic, Operators, Logical Procedures Making Use of Functions, Obtaining Assistance in R and Leaving R-Studio

Mapping of Course	CO1							
Outcomes		L						
Unit II	Operators, variables in R	(07 Hours)						
Variables, Numeric, Cha Factor Vector Sorting, Sp	Variables, Numeric, Characteristic, and Logical Data, Vectors, Data Frames, Factors, Numeric, Character, and Factor Vector Sorting, Special Values							
Mapping of Course Outcomes	CO2							
Unit III	Control Statements	(08 Hours)						
If, if...else statement, if else () function, switch function, repeat loop, while loop, for loop, break statement, next statement, while loops, for loops, R Plot, R Line, R Pie Chart, R Bars

	<u> </u>			
Mapping of Course Outcomes	03			
Unit IV		Data Types in R		(08 Hours)
Creating Vectors, accessi accessing matrices' eleme Using format to format in manipulating list element accessed. Calculations be and data frame manipulat Mapping of Course Outcomes	ng elements of a Ve ents Matrices operat ategers and strings n s combining lists, cu tween array compo- tion Putting together CO4	ector, Operations on Vectors, Vectors, transpose a matrix Creating ananipulation of strings Creating a converting lists to vectors, Arrays nents, data frame creation Data for data frames from a variety of so	ctor Arithmetic, or strings, copying and modifying lis are created, and rame operations, purces	creating matrices, g, and pasting its, as well as array elements are data frame access,
Unit V	Stati	stics & Data Visualizati	on	(08 Hours)
Data Visualization need. Ba functions as pie chart / a th Scatter graph, Graph in a missing data Extracting a Mapping of Course Outcomes	ar Graph, Categorica aree-dimensional pice a box, creating a we subset of a data fra CO5	e chart orking directory, Downloading, me, Writing R scripts, Adding co	and importing daments and doc	and histogram plot ata, working with umentation
Unit VI	Data and File	(08 Hours)		
Reading and writing data the Select, From, Where I R-Studio-Cloud Mapping of Course	R CSV file, R Exce s, Like, Order By, L CO6	el file, R XML file, R Database, V imit, Max, Min SQL functions, s	Writing SQL state cripting, Introduc	ements in R Using cing R-Studio and
Dutcomes				
1.Peng, R.D2.R in Actio3.R for DataPublisher - O'Reil4.Phillips, N5.Grolemun	e. (2020). R Program on, By - Robert L. K a Science , Hadley V ly I.D. (2018). YaRrr, d, G. and Wickham	nming for Data Science. abacoff, Latest Edition – Second Vickham and Garrett Gorlemund The Pirate's Guide to R. , H. (2019). R for Data Science	l , Latest Edition -	- First
 Practical's: 1. Understand a vectors, matr 2. Write a progr 3. Create a progr marks should 	nd manipulate stringices, and databases. am to check whether ram that prints the solution of t	gs (for example, substr() and sca er a year (integer) entered by the students' grades based on their gr	n()) & understan user is a leap yea ades. The follow	d data indexing in ar or not? ing is how the
	Marks	Grades		
8	00-1000	A+ A		
5	00 - 700	B+		
4	400-500	В		

С

D

150 - 400

Less than 150

- 4. Create a simple calculator in R by using switch cases and functions to add, subtract, multiply, and divide.
- 5. Learn how loops work in R. Make your own vector loop.
- 6. For data manipulation, use if else statement. Contrast if else statement.
- 7. Make a list and a data frame that stores the grades for any three subjects for ten students. Determine the total, average, maximum, and minimum marks for each subject.
- 8. Outline the steps for importing data from Excel to CSV files and using data viewer functions such as rm(), dim(), head(), tail(), sorting, filtering, and searching to view a subset of rows.

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
со	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2					-	-	-	-	-	-

@The CO-PO Mapping Matrix

Dr. D. Y. Patil School of Science & Technology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune **BT 203: Foundations of Data Science**

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	03	Internal Assessment (TH): 40 Marks
Practical: 04 Hours/Week		End Semester (TH): 60 Marks

Course Objective:

The objective of this course is:

- 1. To understand the fundamentals of data science
- 2. To learn various data pre-processing and data collection techniques
- 3. To understand the process of data analytics and model building
- 4. To understand different tools and techniques of data visualization

Course Outcomes:

After completion of the course, learners should be able to

CO1: To understand the concept of data science and data science life cycle

CO2: To apply the pre-processing techniques for generating quality data inputs

CO3: To analyse the concept and parameters of exploratory data analytics

CO4: To develop the regression models using data science and analytics process

CO5: To analyse various tools and techniques of data visualization

CO6: handling data, encoding, tools apply, and types of data visualization.

Prerequisites:

Student should have a fundamental understanding of Fundamentals of Programming Languages (C, C++, and Java & Python) and a strong mathematical foundation.

Unit I	Introduction (07 Hour							
Evolution of Data Science	e, Introduction to Data Science – Types of Data, Data Science Vs Bi	g Data, Concept of						
Big Data, Concept of Dat	a Warehousing, Introduction to Data Mining, Role of Data Scientist	, Data Science Life						
Cycle, Data Science Role	s – Data Science Project Stages – Data Science Applications in Vari	ious Fields – Data						
Security Issues, thinking	in a structured way to solve data science problem statements.							
Mapping of Course	CO1							
Outcomes								
Unit II	Pre-processing & collection of data	(08 Hours)						
	F	· · · ·						
Need of Data Pre-process	sing, Pre-processing of data and data collection, Data Pre-Processing	g Overview – Data						
Cleaning – Data Integrat	tion and Transformation - Data Reduction - Data Discretization,	Data Storage, and						
management,Data prepara	ation with Sandbox for analytics							
Mapping of Course	CO2							
Outcomes								
Unit III	Exploratory Data Analytica							
	Exploratory Data Analytics	(00 Hours)						
Introduction to Data Analy	ytics/Concept of Data Analytics Types of Data Analytics, Descripti	ve Statistics, Mean,						
Standard Deviation, Skewn	ness, and Kurtosis, Box Plots, Pivot Table, Heat Map, Correlation S	tatistics , ANOVA ,						
Exploratory Data Analytic	s, Confidence (statistical) intervals; variances and correlations							
Mapping of Course	CO3							
Outcomes								
Unit IV	Regression & Model Development	(08 Hours)						

Simple and Linear Regression – Visual Model Evaluation – Residual Plot – Distribution Plot – Polynomial Regression and Pipelines – Residual Plot – Distribution Plot – Polynomial Regression and Pipelines – Insample Evaluation Measures – Prediction and Decision Making

Mapping of Course CO4 Outcomes

Model Evaluation Generalization

(08 Hours)

Metrics for Out-of-Sample Evaluation Error – Cross Validation – Overfitting – Under fitting and Model Selection – Ridge Regression Prediction – Grid Search Testing Multiple Parameters

Mapping of Course CO5

Outcomes for Unit V

Unit V

Unit VI	Data Visualization	(06 Hours)

Data handling /Data wrangling using Python Definition, Types of visualization, data visualization, Data types, Data encoding, mapping variables, Conventional data visualization tools, Techniques for visual data representations, Types of data visualization

Mapping of Course	CO6
Outcomes	

Methodology:

The course will be covered through lectures, videos, MOOC courses and practical.

Reference Book:

.G. Strang . Introduction to Linear Algebra, Wellesley-Cambridge Press, Fifth edition, USA, 2016.

2. Bendat, J. S. and A. G. Piersol. Random Data: Analysis and Measurement Procedures. 4th Edition. John Wiley & Sons, Inc., NY, USA, 2010

3. Montgomery, D. C. and G. C. Runger. Applied Statistics and Probability for Engineers. 5th Edition. John Wiley & Sons, Inc., NY, USA, 2011.

- 4. David G. Luenberger . Optimization by Vector Space Methods, John Wiley & Sons (NY), 1969.
- 5. Cathy O'Neil and Rachel Schutt . Doing Data Science, O'Reilly Media, 2013.

6. Jojo Moolayil, "Smarter Decisions : The Intersection of IoT and Data Science", PACKT, 2016.

7.Cathy O'Neil and Rachel Schutt, "Doing Data Science", O'Reilly, 2015.

8. David Dietrich, Barry Heller, Beibei Yang, "Data Science and Big data Analytics", EMC 2013

Practicals

1 Determine the need for data science and use Python's built-in data types and techniques to tackle basic challenges.

2 Using the OOP paradigm, create an application with user-defined modules and packages. Install, configure and run Hadoop and HDFS

- 3 Use NumPy arrays for efficient storage and data operations.
- 4. Use Python Data Structures, Intrinsic NumPy objects, and Random Functions to create NumPy arrays.
- 5. NumPy array manipulation (indexing, slicing, reshaping, joining, and splitting).
- 6. Using Universal Functions and Mathematical Methods to compute on NumPy arrays
- 7. Import any CSV file into a Pandas Data Frame and run the following commands:
 - (a) Visualize the first and last 10 records
 - (b) Determine the shape, index, and column details
 - (c) Select/Delete records (rows)/columns based on circumstances

<u>@The CO-PO Mapping Matrix</u>

CO\ PO	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO 12
СО	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
Co7	1	2	2				-	-	-	-	-	-

SEMESTER V									
Course Code	Course Name	L	Т	Р	Hr	Cr			
PCC-AI 501	Big data analytics	3	0	2	5	4			
PCC-AI 502	Machine Learning	3	0	2	5	4			
PCC-AI 503	Web Technology	3	0	2	5	4			
PCC-AI 504	Design and Analysis of Algorithm	3	0	0	3	3			
PEC-AI 501	Elective-I	3	0	0	3	3			
PEC-AI 502	Skill Enhancement Course-I	2	0	0	2	2			
	Total	16	0	12	23	20			
Elective I (A-H	uman Computer Interface, B-System modeling and	Design	n, C-Pat	ttern R	ecogni	tion, D-			
Structural Biolo	gy and Bioinformatics)								
Skill Enhanceme	Skill Enhancement Course I : Language-I: (Foreign Language (French/German/Japanese)/								
Hindi/Marathi)									

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PCC-AI 501: Big Data and Analytics

Teaching Scheme

Credit Scheme

04

Examination Scheme and Marks

Lecture: 03 Hours/Week

Internal Assessment (TH): 40

End Semester (TH): 60

Prerequisites: Students must have fundamental knowledge of data structures & SQL queries

Course Objectives:

- 1. Understand the Big Data Platform and its Use cases
- 2. Provide an overview of Apache Hadoop
- 3. Provide HDFS Concepts and Interfacing with HDFS
- 4. Understand Map Reduce Jobs
- 5. Provide hands on Hodoop Eco System
- 6. Apply analytics on Structured, Unstructured Data.

Course Outcomes:

Upon successful completion of this course, students will be able to:

CO 1. Outline the significance and challenges of big data

- CO 2. Model big data using different totals and frameworks
- CO 3. Apply big data techniques for useful business analytic applications
- CO 4. Design algorithms for mining the data from large volumes
- CO 5 Evaluate and select appropriate tools and technologies for handling big data
- CO 6. Interpret and communicate the insights gained from big data analysis

Unit I	Introduction	(06 H	ours)						
Evolution of Big Data, Types of Digital Data. Classification of Digital Data, Structured Data. Semi-									
Structured Data. Unstructured Da	ata, Definition of Big Data, Challen	ges of Convention	nal Systems, Big						
data platforms and data storage.									
Mapping of Course Outcomes	C01								
Unit II	Big Data Analytics	(0	8 Hours)						
Importance of Big data analytics, Cla meet the Challenges Posed Big Data	assification of Analytics, Top Challeng Terminologies Used in Big Data Envi	es Facing Big data, ronment	Technologies to						
Mapping of Course Outcomes	CO2								
Unit III	Hadoop		(06 Hours)						
Introducing History of Hadoop, con Hadoop Overview , Business Value Echo System. Hadoop in the Cloud,	nparisons of RDBMS and Hadoop, Dis of Hadoop, Processing Data with Hado Applications on Big Hadoop Ecosyste	stributed Computin pop, Hadoop Strear m	g Challenges, ning, Hadoop						
Mapping of Course Outcomes	CO3								
Unit IV	HDFS(Hadoop Distributed & Map Reduce	File System)	(10 Hours)						
HDFS(Hadoop Distributed File System) The Design of HDFS, HDFS Concepts, Command Line Interface, Hadoop file system interfaces, Data flow, Data Ingest with Flume and Scoop and Hadoop archives, Hadoop I/O: Compression, Serialization, Avro and File-Based Data structures. Map Reduce Anatomy of a Map Reduce Job Run, Failures, Job Scheduling, Shuffle and Sort, Task Execution, Map Reduce Types and Formats, Map Reduce FeaturesMapping of Course OutcomesCO4									

Unit V	Hadoop EcoSystem	(06 Hours)								
Pig: Introduction to PIG, Execution Modes of Pig, Comparison of Pig with Databases, Grunt, Pig Latin, User										
Defined Functions, Data Processing	operators. Jua Metastora, Comparison with Traditional Databases	HiveOI Tables								
Querying Data and User Defined Fu	netions.	, model, rables,								
Hbase: HBasics, Concepts, Clients,	Example, Hbase Versus RDBMS.									
Big SQL: Introduction										
Mapping of Course Outcomes	CO5									
Unit VI	The Big Data Technology Landscape &	(09 Hours)								
	Algorithms									
CAP Theorem – BASE. Concept, N in MongoDB. Applying Linear Regr Introduction to IBM InfoSphere Big	oSQL, Types of No SQL databases, Introduction to Mongession, Clustering, Association rule mining. Decision tree gInsights	goDB, Data Types on Big Data.								
Mapping of Course Outcomes	CO6									
	List of Practical									
1. Learning limitation of data analyti	cs by applying Machine Learning Techniques on large am	ount of data. Write								
R/Python program to Read data set f	rom any online website, excel file and CSV file and to per	form								
a) Linear regression and log	istic regression on iris dataset.									
b) K-mcans clustering.										
2. Setup single node Hadoop cluster	and apply HDFS commands on single node Hadoop Clus	ter. (*students can								
setup multimode cluster in laborator	y)									
3. Apply MapReduce algorithms to p	perform analytics on single node cluster:									
a) Analyze phrase frequency	r from given dataset									
b) Search Records with mate	ching criteria									
c)Aggregate inputs and search	ch records based on aggregation									
4. Analyze impact of different numb	er of mapper and reducer on same definition as practical 3	3.								
5. Setup the MongoDB environment	in your system. Import Restaurant Dataset and perform C	RUD operation.								
6. Extend MongoDB functionality for	or MapReduce on document collection									
7. SPark SQL and MLLib:										
(i) PYspark shell exploration	on and reading and writing in HDFS									
(ii) Clustering using MLlib,	compare results of clustering with Hadoop MR and with S	Spark								
8. Identify a case study to perform a	nalytics on different platforms (like NoSQLs, Spark, Zook	eeper and (analyse								
differences.										
Learning R	esources									

Reference Books:

1. Seema Acharya, Subhasini Chellappan, "Big Data Analytics" Wiley 2015

2. Tone White, Tone White, Hadoop: The Definitive Guide, O'reilly Media Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos.

3. Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos. "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaining Data". McGraw Hill Publishing

4. Bill Franks, Taming the Big Data Tidal Wave: "Finding Opportunities in Huge Data Streams with Advanced Analytics, John Wiley & sons

5. Paul Zikopoulos. Dirk deRoos, Krishnan Parasuraman, Thomas Deutsch, James Giles. David Corrigan,

"Harness the Power of Big Data" the IBM Big Data Platform, Tata McGraw Hill Publications

6.Michael Minelli, Michele Chambers, Ambiga Dhiraj, Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses, Wiley Publications

eBooks:

- 1. Big Data: A Revolution That Will Transform How We Live, Work, and Think" by Viktor Mayer-Schönberger and Kenneth Cukier.
- 2. "The Big Data-Driven Business: How to Use Big Data to Win Customers, Beat Competitors, and Boost Profits" by Russell Glass and Sean Callahan.
- 3. "Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking" by Foster Provost and Tom Fawcett.

"Big Data: Understanding How Data Powers Big Business" by Bill Schmarzo.

- 1. https://onlinecourses.swayam2.ac.in/
- 2. Coursera: Coursera offers a wide range of courses on Big Data and Analytics, including "Big Data Specialization" by University of California, San Diego and "Data Science and Machine Learning Bootcamp with R" by Johns Hopkins University.

<u>@The CO-PO Mapping</u> <u>Matrix</u>												
CO\ PO	PO 1	PO 2	PO 3	PO 4	P O 5	PO 6	PO 7	P O 8	PO 9	PO 10	PO 11	PO 12
CO1	1	1	2	1	-	-	-	-	-	-	-	-
CO2	1	2	-	2	-	-	-	-	-	-	-	-
CO3	2	1	2	1	-	-	-	-	-	-	-	-
CO4	1	2	-	2	-	-	-	-	-	-	-	-
CO5	-	-	2	-	-	-	-	-	-	-	-	-
CO6	-	2	1	2	-	-	-	-	-	-	-	-

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PCC-AI 502: Machine Learning

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	04	Internal Assessment (TH): 40
		End _Semester (TH): 60

Prerequisites: Students must have knowledge of linear algebra, calculus, programming skills, probability, and statistics. Students also must have fundamental knowledge of Artificial Intelligence

Course Objectives:

- 1. To understand the basic theory underlying machine learning.
- 2. To be able to formulate machine learning problems corresponding to different applications.
- 3. To understand a range of machine learning algorithms along with their strengths and weaknesses.
- 4. To be able to apply machine learning algorithms to solve problems of moderate complexity.
- 5. To apply the algorithms to a real-world problem, optimize the models learned, and report on the expected accuracy of the models.

Course Outcomes:

Upon successful completion of this course, students will be able to:

- **CO 1**. To appreciate the significance of modelling in data analytics solutions.
- CO 2. To apply structured thinking to unstructured problems
- CO 3.To demonstrate how to evaluate models generated from data
- CO 4. To develop an appreciation for what is involved in learning models from data
- **CO 5.** To apply the algorithms to a real problem, optimize the models learned.

CO 6. To apply dimensionality reduction techniques to effectively analyze and extract valuable insights from high-dimensional datasets.

Unit I	Introduction	(02 Hours)						
Overview Of Machine	Overview Of Machine Learning, Related Areas, Applications, Software Tools. Different Paradigms							
of Machine Learning.	of Machine Learning.							
Mapping of Course	CO1	CO1						
Outcomes								
Unit II	Supervised Learning	(07 Hours)						
Artificial Neural Netw time: decision trees, C vector machines, Impr	twork, Classifying with k-Nearest Neighbors, Splitting datasets one feature at a Classifying with probability theory: naive Bayes, Logistic regression, Support proving classification with the AdaBoost meta algorithm.							
Outcomes								
Unit III	Unsupervised Learning	(07 Hours)						
Association analysis with the Apriori algorithm, K-means clustering, expectation maximization, Gaussian mixture density estimation, mixture of naive Bayes, model selection.								
Avapping of Course								
Outcomes								
Unit IV	Reinforcement learning	(07Hours)						

Markov decision process (MDP), Bellman equations, Value iteration and policy iteration, Linear							
quadratic regulation (LQR), Linear Quadratic Gaussian (LQG), Q-learning, Value function							
approximation, Policy search, POMDPs.							
Mapping of Course Outcomes	CO3, CO4						
Unit V	Forecasting and Learning	(07 Hours)					
	Theory						
Predicting numeric values: regression, Tree-based regression. Bias/variance tradeoff, Union and Chernoff/Hoeffding bounds, Vapnik–Chervonenkis (VC) dimension, Worst case (online) learning, Practical advice on how to use learning algorithms.							
Outcomes							
Unit VI	Neural networks &	(08 Hours)					
	Dimentionality Reduction						
multiclass discrimina Feature selection, prin independent compone Mapping of Course	tion, training procedures, localized r ncipal component analysis, linear dis ent analysis, multidimensional scalin CO6	network structure, deep neural networks. scriminant analysis, factor analysis, ng, and manifold learning.					
Outcomes	List of Practica						
 tree should be to Write a program The learned class Write a program The decision tree rounds. The con for the test insta the training set Write a program Euclidean distan points. Iterate for of the data poin Write a program 	 tree should be tested on few test samples. The tree structure should be printed as output. Write a program to learn a naïve Bayes classifier and use it to predict class labels of test data. The learned classifier should be tested on test instances with unknown class labels and the predicted class labels for the test instances should be printed as output Write a program to implement the Adaboost algorithm with decision tree as the base classifier. The decision tree implemented in Assignment 1 may be called as a function. Run Adaboost for 3 rounds. The combined classifier should be tested on test instances and the accuracy of prediction for the test instances should be printed as output. A single program should train the classifier on the training set as well as test it on the test set. Write a program to cluster a set of points using K-means. Consider, K=2, clusters. Also, consider Euclidean distance as the distance measure. Randomly initialize a cluster mean as one of the data points. Iterate for 10 iterations. After iterations are over, print the final cluster numbers for each of the data points. 						
distance should tested on test in instances should 6. Spam email cla to classify emai various SVM p	 b. Write a program to use a K-nearest neighbor it to predict class labels of test data. Euclidean distance should be used as the distance metric. Consider K=5. The learned classifier should be tested on test instances with unknown class labels, and the predicted class labels for the test instances should be printed as output. 6. Spam email classification using Support Vector Machine: In this assignment you will use a SVM to classify emails into spam or non-spam categories. And report the classification accuracy for various SVM parameters and kernel functions. You have to submit the report file in pdf format. 						
7. Write a program to be 0.1. (You weights of the p be tested on test instances should	 Write a program to train a single perceptron using the delta learning rule. Consider learning rate to be 0.1. (You may also try to find out a better learning rate by trial.) Randomly initialize the weights of the perceptron. Train the perceptron for 10 epochs. Then, the learned classifier should be tested on test instances with unknown class labels, and the predicted class labels for the test instances should be printed as output. 						
Lear	ning Resources						
Text Books:							
1. Machine Learni	ing, E. Alpaydin, MIT Press, 2010						

2. C. M. Bishop. Pattern Recognition and Machine Learning. First Edition. Springer, 2006. (Second Indian Reprint, 2015).

3. P. Flach. Machine Learning: The Art and Science of Algorithms that Make Sense of Data. First Edition, Cambridge University Press, 2012.

- 4. Machine Learning: A Probabilistic Perspective, K. Murphy, MIT Press, 2012.
- 5. Pattern Classification, R. Duda, E. Hart, and D. Stork, Wiley-Interscience, 2000.
- 6. Machine Learning, T. Mitchell, McGraw-Hill, 1997.
- 7. The Elements of Statistical Learning Hastie, Tibshirani, Friedman
- 8. Machine Learning Tom Mitchell (TM)

eBooks:

- 1. "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron.
- 2. "Pattern Recognition and Machine Learning" by Christopher M. Bishop.
- 3. "Machine Learning Yearning" by Andrew Ng.

- 1. Coursera: Coursera offers a wide range of machine learning courses, including the famous "Machine Learning" course by Andrew Ng. It covers the fundamentals of machine learning and is highly recommended for beginners.
- 2. edX: edX provides courses on machine learning from prestigious institutions like Harvard, MIT, and Microsoft. One popular course is "Introduction to Artificial Intelligence" by IBM.

	<u>@The CO-PO</u>											
	Mapping Matrix											
CO\ PO	Р О1	P O2	PO 3	Р О4	P 0 5	PO 6	PO 7	P O 8	PO 9	PO 10	PO 11	P 01 2
CO 1	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PCC-AI 503: Web Technology

Teaching Scheme	Credit Scheme	Examination Scheme and Marks		
Lecture: 03 Hours/Week	04	Internal Assessment (TH): 40		
		End _Semester (TH): 60		

Prerequisites: Basic knowledge of Data Structures and Algorithms, Discrete Mathematics is required.

Objectives:

- 1. Translate user requirements into the overall architecture and implementation of new systems and Manage Project and coordinate with the Client
- 2. Write backend code in PHP language and Writing optimized frontend code HTML and JavaScript
- 3. Understand, create and debug database related queries and Create test code to validate the applications against client requirement
- 4. Monitor the performance of web applications & infrastructure and Troubleshooting web application with a fast and accurate a resolution

Course Outcomes:

Upon successful completion of this course, students will be able to:

- CO 1. To gain knowledge of client-side scripting, validation of forms
- **CO 2**. To understand server-side scripting with PHP language
- CO 3. To understand what is XML and how to parse and use XML Data with Java
- CO 4. To introduce Server-side programming with Java Servlets and JSP
- **CO 5.** To develop dynamic web applications using client-side scripting with JavaScript.
- CO 6. To implement AJAX programming techniques to enhance the interactivity of web applications.

Unit I	Introduction to PHP	(08 Hours)						
Declaring variables, d	lata types, arrays, strings, operators, expl	ressions, control structures,						
functions, Reading data	from web form controls like text boxes, radie	o buttons, lists etc., Handling						
File Uploads. Connectin	ng to database (MySQL as reference), execut	ting simple queries, handling						
results, Handling session	ons and cookies. File operations like openir	ng, closing, reading, writing,						
appending, deleting etc.	on text and binary files, listing directories.							
Mapping of Course	CO2							
Outcomes								
Unit II	HTML Common tags	(08 Hours)						
HTML Common tags-L	ist, Tables, images, forms, Frames; Cascadin	ng Style sheets; XML:						
Introduction to XML, D	efining XML tags, their attributes and values	s, Document Type						
Definition, XML Schem	nes, Document Object Model, XHTML Parsi	ng XML Data – DOM and						
SAX Parsers in java.								
Mapping of Course	CO1							
Outcomes								
Unit III	Introduction to Servlets	(08 Hours)						
Common Gateway Inter	rface (CGt), Life cycle of a Servlet, deployin	g a servlet, The Servlet API,						
Reading Servlet parameters, Reading Initialization parameters, Handling Http Request &								
Responses, Using Cookies and Sessions, connecting to a database using JDBC.								
Mapping of Course	CO3							
Outcomes								
Unit IV		(08Hours)						
	Introduction to JSP	(08Hours)						

Snippets, implicit objects, Using Beans in JSP Pages, Using Cookies and session for session tracking, connecting to database in JSP. Mapping of Course Outcomes CO4 Unit V Client-side Scripting (08 Hours) Introduction to Javascript, Javascript language – declaring variables, scope of variables, functions, event handlers (onclick, onsubmit etc.), Document Object Model, Form validation. Mapping of Course Outcomes CO5 Unit VI Dynamic Web (08 Hours) Introduction to AJAX (Asynchronous JavaScript and XML), AJAX architecture, XMLHttpRequest object, handling server responses asynchronously, updating web page content dynamically without reloading the entire page, working with JSON data, implementing AJAX in web applications. Mapping of Course Outcomes CO6 Unit or PAGE CO6 Uncomes CO6 I. Design the following static web pages required for an online bookstore website. 1. HOME PAGE: The static home page must contain three frames 2. LOGIN PAGE 3. CATOLOGUE PAGE: The catalogue page should contain the details of all the books available on the website in a table. 4. REGISTRATION PAGE 1. First Name (Name should not be less than 6 characters) length). 3. Password Qassword should not be less than 6 characters length). 3. Password Qassword should not be less than 6 characters length). 4. Revelop and demonstrate the vage of indire DVPL UB ovece and functions p							
tracking, connecting to database in JSP. Mapping of Course Outcomes CO4 Unit V Client-side Scripting (08 Hours) Introduction to Javascript, Javascript language – declaring variables, scope of variables, functions, event handlers (onclick, onsubmit etc.), Document Object Model, Form validation. Mapping of Course Outcomes CO5 Unit VI Dynamic Web Applications with AJAX (08 Hours) Introduction to AJAX (Asynchronous JavaScript and XML), AJAX architecture, XMLHttpRequest object, handling server responses asynchronously, updating web page content dynamically without reloading the entire page, working with JSON data, implementing AJAX in web applications. Mapping of Course Outcomes CO6 I. Design the following static web pages required for an online bookstore website. In HOME PAGE: The static home page must contain three frames 1. LOGIN PAGE CATOL/OGUE PAGE: The catalogue page should contain the details of all the books available on the website in a table. First Name (Name should not be less than 6 characters) length). First Name (Name should contains alphabets and the length should not be less than 6 characters). 2. Password (Password should not be less than 6 characters length). First Name (Phone number should contain 10 digits only). Lest and Caters of the PAG PAGE PAGE PAGE PAGE PAGE PAGE PAGE							
Mapping of Course Outcomes CO4 Unit V Client-side Scripting (08 Hours) Introduction to Javascript, Javascript language – declaring variables, scope of variables, functions, event handlers (onclick, onsubmit etc.), Document Object Model, Form validation. Mapping of Course Outcomes CO5 Unit VI Dynamic Web Applications with AJAX (08 Hours) Mapping of Course Outcomes CO5 (08 Hours) Introduction to AJAX (Asynchronous JavaScript and XML), AJAX architecture, XMLHttpRequest object, handling server responses asynchronously, updating web page content dynamically without reloading the entire page, working with JSON data, implementing AJAX in web applications. Mapping of Course Outcomes CO6 I. Design the following static web pages required for an online bookstore website. 1. HOME PAGE: The static home page must contain three frames 2. LOGIN PAGE 3. CATOLOGUE PAGE: The catalogue page should contain the details of all the books available on the website in a table. 4. REGISTRATION PAGE 2. Write JavaScript to validate the following fields of the Registration page. 1. First Name (Name should contains alphabets and the length should not be less than 6 characters). 2. Password (Password should not be less than 6 characters length). 3. E-maii id (should not contain any invalid and must follow							
Outcomes Introduction to Javascript, Javascript language – declaring variables, scope of variables, functions, event handler- (onclick, onsubmit etc.), Document Object Model, Form validation. Mapping of Course Outcomes CO5 Unit VI Dynamic Web Applications with AJAX (08 Hours) Introduction to AJAX (Asynchronous JavaScript and XML), AJAX architecture, XMLHttpRequest object, handling server responses asynchronously, updating web page content dynamically without reloading the entire page, working with JSON data, implementing AJAX in web applications. Mapping of Course Outcomes CO6 Unit VI Dynamic Web Applications with AJAX Introduction to AJAX (Asynchronous JavaScript and XML), AJAX architecture, XMLHttpRequest object, handling server responses asynchronously, updating web page content dynamically without reloading the entire page, working with JSON data, implementing AJAX in web applications. Mapping of Course Outcomes CO6 Unclose He following static web pages required for an online bookstore website. 1. HOME PAGE: The static home page must contain three frames 2. LOGIN PAGE 3. CATOLOGUE PAGE: The catalogue page should contain the details of all the books available on the website in a table. 4. REGISTRATION PAGE 2. Write JavaScript to validate the following fields of the Registration page. 1. First Name (Name should contain aphabets and the length should not be less than 6 characters). 2. Password (Password should not be class than 6 char							
Unit V Client-side Scripting (08 Hours) Introduction to Javascript, Javascript language – declaring variables, scope of variables, functions, event handlers (onclick, onsubmit etc.), Document Object Model, Form validation. Mapping of Course Outcomes CO Unit VI Dynamic Web Applications with AJAX Introduction to AJAX (Asynchronous JavaScript and XML), AJAX architecture, XMLHttpRequest object, handling server responses asynchronously, updating web page content dynamically without reloading the entire page, working with JSON data, implementing AJAX in web applications. Mapping of Course Outcomes CO I. Design the following static web pages required for an online bookstore website. 1. HOME PAGE: The static home page must contain three frames 1. LOGIN PAGE CATOLOGUE PAGE: The catalogue page should contain the details of all the books available on the website in a table. 4. REGISTRATION PAGE . 2. Write JavaScript to validate the following fields of the Registration page. 1. First Name (Name should contain alphabets and the length should not be less than 6 characters). 2. Password (Password should not be less than 6 characters length). 3. E-mail id (should not contain any invalid and must follow the standard pattern name@domain.com) 4. Mobile Number (Phone number should contain 10 digits only). 5. Last Name and Address (should not be Empty). 6. Lowith downow track the usa							
Introduction to Javascript, Javascript language – declaring variables, scope of variables, functions, event handlers (onclick, onsubmit etc.), Document Object Model, Form validation. Mapping of Course Outcomes CO5 Unit VI Dynamic Web Applications with AJAX (08 Hours) Multiple CO5 (08 Hours) Mapping of Course Outcomes CO5 (08 Hours) Mapping of Course Outcomes CO5 (08 Hours) Multiple Questions (08 Hours) Mapping of Course Outcomes CO6 (08 Hours) Mapping of Course Outcomes CO6 CO6 Outcomes CO6 Elist of Practical: 1. Design the following static web pages required for an online bookstore website. 1. HOME PAGE: The static home page must contain three frames 2. LOGIN PAGE 3. CATOLOGUE PAGE: The catalogue page should contain the details of all the books available on the website in a table. 4. REGISTRATION PAGE 2. Write JavaScript to validate the following fields of the Registration page. 1. First Name (Name should contain salphabets and the length should not be less than 6 characters). 2. Password (Password should not be less than 6 characters length). 3. E-mail id (should not contain any invalid and must follow the standard pattern name@domain.com) 4. Mobile Number (Phone number should contain 10 digits only).							
Mapping of Course Outcomes CO5 Unit VI Dynamic Web Applications with AJAX (08 Hours) Introduction to AJAX (Asynchronous JavaScript and XML), AJAX architecture, XMLHttpRequest object, handling server responses asynchronously, updating web page content dynamically without reloading the entire page, working with JSON data, implementing AJAX in web applications. Mapping of Course Outcomes CO6 I. Design the following static web pages required for an online bookstore website. 1. HOME PAGE: The static home page must contain three frames 2. LOGIN PAGE 3. CATOLOGUE PAGE: The catalogue page should contain the details of all the books available on the website in a table. 4. REGISTRATION PAGE 2. Write JavaScript to validate the following fields of the Registration page. 1. First Name (Name should contains alphabets and the length should not be less than 6 characters). 2. Password (Password should not be less than 6 characters length). 3. E-mail id (should not contain any invalid and must follow the standard pattern name@domain.com) 4. Mobile Number (Phone number should contain 10 digits only). 5. Last Name and Address (should not be Empty). 3. Develop and demonstrate the usage of inline, internal and external style sheet using CSS.							
Unit VI Dynamic Web Applications with AJAX (08 Hours) Introduction to AJAX (Asynchronous JavaScript and XML), AJAX architecture, XMLHttpRequest object, handling server responses asynchronously, updating web page content dynamically without reloading the entire page, working with JSON data, implementing AJAX in web applications. Mapping of Course Outcomes CO6 I. Design the following static web pages required for an online bookstore website. 1. HOME PAGE: The static home page must contain three frames 2. LOGIN PAGE 3. CATOLOGUE PAGE: The static home page must contain three frames 4. REGISTRATION PAGE 2. Write JavaScript to validate the following fields of the Registration page. 1. First Name (Name should contains alphabets and the length should not be less than 6 characters). 2. Password (Password should not be less than 6 characters length). 3. E-mail id (should not contain any invalid and must follow the standard pattern name@domain.com) 4. Mobile Number (Phone number should contain 10 digits only). 5. Last Name and Address (should not be Empty). 3. Develop and demonstrate the usage of inline, internal and external style sheet using CSS.							
Introduction to AJAX (Asynchronous JavaScript and XML), AJAX architecture, XMLHttpRequest object, handling server responses asynchronously, updating web page content dynamically without reloading the entire page, working with JSON data, implementing AJAX in web applications. Mapping of Course Outcomes CO6							
 List of Practical: 1. Design the following static web pages required for an online bookstore website. HOME PAGE: The static home page must contain three frames LOGIN PAGE CATOLOGUE PAGE: The catalogue page should contain the details of all the books available on the website in a table. REGISTRATION PAGE Write JavaScript to validate the following fields of the Registration page. First Name (Name should contains alphabets and the length should not be less than 6 characters). Password (Password should not be less than 6 characters length). E-mail id (should not contain any invalid and must follow the standard pattern name@domain.com) Mobile Number (Phone number should contain 10 digits only). Last Name and Address (should not be Empty). Develop and demonstrate the usage of inline, internal and external style sheet using CSS. 							
 List of Practical: 1. Design the following static web pages required for an online bookstore website. HOME PAGE: The static home page must contain three frames LOGIN PAGE CATOLOGUE PAGE: The catalogue page should contain the details of all the books available on the website in a table. REGISTRATION PAGE Write JavaScript to validate the following fields of the Registration page. First Name (Name should contains alphabets and the length should not be less than 6 characters). Password (Password should not be less than 6 characters length). E-mail id (should not contain any invalid and must follow the standard pattern name@domain.com) Mobile Number (Phone number should contain 10 digits only). Last Name and Address (should not be Empty). Develop and demonstrate the usage of inline, internal and external style sheet using CSS. 							
 Design the following static web pages required for an online bookstore website. HOME PAGE: The static home page must contain three frames LOGIN PAGE CATOLOGUE PAGE: The catalogue page should contain the details of all the books available on the website in a table. REGISTRATION PAGE Write JavaScript to validate the following fields of the Registration page. First Name (Name should contains alphabets and the length should not be less than 6 characters). Password (Password should not be less than 6 characters length). E-mail id (should not contain any invalid and must follow the standard pattern name@domain.com) Mobile Number (Phone number should contain 10 digits only). Last Name and Address (should not be Empty). Develop and demonstrate the usage of inline, internal and external style sheet using CSS. 							
 Design the following static web pages required for an online bookstore website. HOME PAGE: The static home page must contain three frames LOGIN PAGE CATOLOGUE PAGE: The catalogue page should contain the details of all the books available on the website in a table. REGISTRATION PAGE Write JavaScript to validate the following fields of the Registration page. First Name (Name should contains alphabets and the length should not be less than 6 characters). Password (Password should not be less than 6 characters length). E-mail id (should not contain any invalid and must follow the standard pattern name@domain.com) Mobile Number (Phone number should contain 10 digits only). Last Name and Address (should not be Empty). Develop and demonstrate the usage of inline, internal and external style sheet using CSS. Develop and demonstrate JavaScript with POP-UP boxes and functions for the following problems: Input: Click on Display Date button using onclick() function Output: Display date in the textbox Input: A number n obtained using prompt Output: Factorial of n number using alert Input: A number n obtained using prompt and add another number using confirm Output: Sum of the entire n numbers using alert S. Write an HTML page that contains a selection box with a list of 5 countries. When the user selects a country, its capital should be printed next in the list. Add CSS to customize the properties of the font of the capital (color, bold and font size). 							
 Develop and demonstrate PHP Script for the following problems: Write a PHP Script to find out the Sum of the Individual Digits. Write a PHP Script to shack whether the given number is Polyadrome or not 							

8. Create an XML document that contains 10 users information. Write a Java Program, which takes User Id as input and returns the user details by taking the user information from XML document using DOM parser or SAX parser.

9. Implement web applications using (a) PHP, (b) Servlets and (c) JSP.

Learning Resources

Text Books:

- 1. 1. Web Technologies, Uttam K Roy, Oxford University Press
- 2. The Complete Reference PHP Steven Holzner, Tata McGraw-Hill

ebooks:

- 1. Web Programming, building internet applications, Chris Bates 2" edition, Wiley Dreamtech
- 2. Java Server Pages Hans Bergsten, SPD O'Reilly,
- 3. Java Script, D.Flanagan
- 4. Beginning Web Programming-Jon Duckett WROX.
- 5. Programming world wide web, R.W.Sebesta, Fourth Edition, Pearson.
- 6. Internet and World Wide Web How to program. Dietel and Nieto, Pearson.

- 1. Coursera (www.coursera.org): Coursera offers a wide range of courses from top universities and institutions. You can find courses on web development, HTML, CSS, JavaScript, and more.
- 2. edX (www.edx.org): edX provides courses from renowned universities and organizations. It offers courses on web development, front-end development, full-stack development, and related topics.

<u>@The CO-PO</u>												
Mapping Matrix												
CO\ PO	РО 1	PO 2	PO 3	PO 4	P O 5	PO 6	PO 7	P O 8	PO 9	PO 10	PO 11	PO1 2
CO 1	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PCC-AI 504: Design and Analysis of Algorithm

Credit Scheme **Examination Scheme and Marks** Lecture: 03 Hours/Week 03 Internal Assessment (TH): 40 End Semester (TH): 60 Prerequisites: Discrete Mathematics, Data Structure and Algorithms

Objectives:

- 1. To develop problem solving abilities using mathematical theories
- 2. To analyze the performance of algorithms
- 3. To study algorithmic design strategies

Teaching Scheme

Course Outcomes:

Upon successful completion of this course, students will be able to:

CO 1. To identify the problem, design the algorithm and confirm the correctness of algorithm

CO 2. Apply and analyze greedy and dynamic programming algorithmic design techniques

- **CO 3.** Apply and analyze Abstract algorithm
- **CO 4.** Analyze the asymptotic performance of algorithms
- **CO 5.** Analyze the amortized algorithms.
- **CO 6.** Analyze the multithreaded and distributed algorithms.

Unit I	Fundamentals	(07 Hours)									
The Role of Algorithms in Computing - What are algorithms, Algorithms as technology, Evolution											
of Algorithms, Design of Algorithm, Need of Correctness of Algorithm, Confirming correctness of											
Algorithm – sample examples, Iterative algorithm design issues											
Mapping of Course	apping of Course CO1										
Outcomes											
Unit II	Models and Design(07 Hours)										
Functional Model – Features, Recursive processes, Scope rules, Tail recursion, Checking correctness of Iterative process. Imperative Model – Basics, Specifications and Prototyping, Stepwise Refinement, Proof Rules – Basics, For loops, Goto and Exit loops, Functions and Procedures, Problem Solving using Greedy strategy - Knapsack problem, Huffman code generation algorithm.											
Mapping of Course	CO2										
Unit III	Abstract Algorithms	(07 Hours)									
Dynamic Programming, Divide and Conquer, Greedy strategy, Branch-n-Bound, Natural Algorithms – Evolutionary Algorithms and Evolutionary Computing, Introduction to Genetic Algorithm, Simulated Annealing, Artificial Neural Network and Tabu Search.Mapping of CourseCO3											
Unit IV	Complexity Theory	(07 Hours)									
Complexity theory – Counting Dominant operators, Growth rate, upper bounds, asymptotic growth, O, Ω , Θ , o and ω notations, polynomial and non-polynomial problems, deterministic and nondeterministic algorithms, P-class problems, NP-class of problems, Polynomial problem reduction NP complete problems- vertex cover and 3-SAT and NP hard problem – Hamiltonian cycle.Mapping of CourseCO4											
Outcomes											

Unit V	Amortized Analysis	(07 Hours)						
Amortized Analysis – Binary, Binomial and Fibonacci heaps, Dijkstra's Shortest path algorithm, Splay Trees, Time-Space tradeoff, Introduction to Tractable and Non-tractable Problems, Introduction to Randomized and Approximate algorithms, Embedded Algorithms: Embedded system scheduling (power optimized scheduling algorithm), sorting algorithm for embedded systems.								
Mapping of Course CO5 Outcomes								
Unit VI	Multithreaded and Distributed Algorithms	(07 Hours)						
Multithreaded Algorithms - Introduction, Performance measures, Analyzing multithreaded algorithms, Parallel loops, Race conditions. Problem Solving using Multithreaded Algorithms - Multithreaded matrix multiplication, Multithreaded merge sort. Distributed Algorithms - Introduction, Distributed breadth first search, Distributed Minimum Spanning Tree. String Matching- Introduction, The Naive string matching algorithm, The Rabin-Karp algorithm Mapping of Course CO6								
Learning Resources								
 Parag Himanshu Dave, Himanshu Bhalchandra Dave, Design And Analysis of Algorithms, Pearson Education, ISBN 81-7758- 595-9 Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, PHI, ISBN 978-81-203- 1131-2 								

Reference Books:

- 1. Michael T. Goodrich, Roberto Tamassia, —Algorithm Design: Foundations, Analysis and Internet ExamplesI, Wiley, ISBN 978-81-265-0986-7
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein,—Introduction to Algorithms, MIT Press; ISBN 978-0-262-03384-8
- 3. Horowitz and Sahani, "Fundamentals of Computer Algorithms", University Press, ISBN:978 81 7371 6126, 81 7371 61262
- 4. Rajeev Motwani and Prabhakar Raghavan, —Randomized Algorithmsl, Cambridge University Press, ISBN: 978-0-521-61390-3
- 5. Dan Gusfield, —Algorithms on Strings, Trees and Sequences^{II}, Cambridge University Press, ISBN:0-521-67035-7

eBooks:

- 1. "Introduction to the Design and Analysis of Algorithms" by Anany Levitin
- 2. "Algorithms" by Robert Sedgewick and Kevin Wayne
- 3. "The Algorithm Design Manual" by Steven S. Skiena

- Coursera: Coursera offers a range of algorithm courses, including "Algorithms, Part I" and "Algorithms, Part II" by Princeton University. These courses cover fundamental algorithms and data structures.
- **2.** edX: edX provides courses on algorithm design and analysis from renowned institutions. "Algorithms and Data Structures" by Microsoft and "Design and Analysis of Algorithms" by IIT Bombay are popular choices.

<u>@The CO-PO Mapping</u>												
]	<u>Matrix</u>	<u> </u>					
CO\ PO	PO 1	PO 2	PO 3	PO 4	P O 5	PO 6	PO 7	P O 8	PO 9	PO 10	PO 11	PO 12
CO1	1	1	2	1	-	-	-	-	-	-	-	-
CO2	1	2	-	2	-	-	-	-	-	-	-	-
CO3	2	1	2	1	-	-	-	-	-	-	-	-
CO4	1	2	-	2	-	-	-	-	-	-	-	-
CO5	-	-	2	-	-	-	-	-	-	-	-	-
CO6	-	2	1	2	-	-	-	-	-	-	-	-
C07	1	2	2	-	-	-	-	-	-	-	-	-

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PEC-AI 501 (A): Elective 1: Human Computer Interface

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	03	Internal Assessment (TH): 40

End_Semester (TH): 60

Prerequisites: Web Technologies; Software Engineering; Experience in designing interfaces for applications and web sites. Basic knowledge of designing tools and languages like HTML, Java, etc

Objectives:

- 1. Understand the important aspects of implementation of human-computer interfaces.
- 2. Identify the various tools and techniques for interface analysis, design, and evaluation.
- 3. Identify the impact of usable interfaces in the acceptance and performance utilization of information systems

Course Outcomes:

At the end of the course, the students will be able to -

- CO 1 Identify User Interface (UI) design principles.
- CO 2 Analysis of effective user friendly interfaces.
- **CO 3.** Apply Interactive Design process in real world applications.
- CO 4. Evaluate UI design and justify.
- **CO 5.** Create application for social and technical task.
- CO 6. Apply principles of User Interface (UI) design to develop effective and user-friendly web interfaces

Unit I	Foundations of HMI	(10 Hours)							
The Human: History of User In	terface Designing, I/O channels, H	Hardware, Software and Operating							
environments, The Psychopathology of everyday Things, Psychology of everyday actions, Reasoning and									
problem solving. The computer: Dev	vices, Memory, processing and networ	ks. Interaction: Models, frameworks,							
Ergonomics, styles, elements, interactivity									
Mapping of Course Outcomes CO1									
Unit II	Interaction Design Basics	(08 Hours)							
What is design?, The process of design, User focus, Cultural probes, Navigation design, the big button trap, Modes, Screen design and layout, Alignment and layout matters, Checking screen colors, Iteration and prototyping Principles to support usability, Standards, Guidelines, HCI patterns.									
Mapping of Course Outcomes	Mapping of Course Outcomes CO2								
Unit IIIGraphical User Interface(04 Hours)									
The graphical User Interface: Popularity of graphics, the concept of direct manipulation, graphical systems, Characteristics.									
Mapping of Course Outcomes CO3									
Unit IV	Screen Designing	(08 Hours)							
Design goals, Screen planning and purpose, organizing screen elements, ordering of screen data and content,									
screen navigation and flow, Visually	pleasing composition, amount of info	rmation, focus and emphasis,							
presentation information simply and meaningfully									

Mapping of Course Outcomes	CO4					
Unit V	Interface Design for Mobile Device(06 Hours)					
Mobile Ecosystem: Platforms, Appli Games, Mobile Information Architec	cation frameworks: Types of Mobile A ture, Mobile 2.0, Mobile Design: Elem	Applications: Widgets, Applications, ents of Mobile Design,				
Mapping of Course Outcomes	CO5					
Unit VI	Web User Interface	(06 Hours)				
Interface popularity, characteristic Principles of user interface. , info consideration in interface	cs. The merging of graphical Busine rmation retrieval on web, statistical	ess systems and the Web. graphics, Technological				
Mapping of Course Outcomes	CO6					
Learning Resources						

Reference Books:

- 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, Human Computer Interaction, 3rd Edition, Pearson Education, 2004.
- 2. Wilbert O. Galitz, The Essential Guide to User Interface Design, Wiley publication.
- 3. Alan Cooper, Robert Reimann, David Cronin, About Face3: Essentials of Interaction design, Wiley publication.
- 4. Jeff Johnson, Designing with the mind in mind, Morgan Kaufmann Publication.
- 5. Donald A. Normann, Design of everyday things, Basic Books; Reprint edition 2002.
- 6. Brian Fling, Mobile Design and Development, First Edition, OReilly Media Inc., 2009.

eBooks:

- 1. Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability" by Steve Krug.
- 2. "The Design of Everyday Things" by Don Norman.
- 3. "Designing Interfaces: Patterns for Effective Interaction Design" by Jenifer Tidwell.

- Coursera: Coursera offers various UI/UX design courses from top universities and industry professionals. You can explore courses such as "Interaction Design Specialization" by UC San Diego, "UI / UX Design" by CalArts, or "Designing the User Experience: User Interface Design Basics" by Georgia Tech.
- 2. Udemy: Udemy has a wide range of UI/UX design courses, including "User Experience Design Essentials Adobe XD UI UX Design" and "UI Design with Photoshop from Scratch" among many others.

CO\ PO	PO 1	PO 2	PO 3	PO 4	P O 5	PO 6	PO 7	P O 8	PO 9	PO 10	PO 11	PO 12
CO1	1	1	2	1	-	-	-	-	-	-	-	-
CO2	1	2	-	2	-	-	-	-	-	-	-	-
CO3	2	1	2	1	-	-	-	-	-	-	-	-
CO4	1	2	-	2	-	-	-	-	-	-	-	-
CO5	-	-	2	-	-	-	-	-	-	-	-	-
CO6	-	2	1	2	-	-	-	-	-	-	-	-
CO7	1	2	2	-	-	-	-	-	-	-	-	-

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PEC-AI 501 (B): Elective 1: System modeling and Design

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	03	Internal Assessment (TH): 40
		End_Semester (TH): 60

Prerequisites: Programming Foundations, Applied Statistics and Statistics for Engineers

Course Objectives: The objective of this course is:

- 1. The course has been designed to provide a solid foundation of systems principles
- 2. An understanding of how business function,
- 3. Heightening students to the issues analysts face daily.

Course Outcomes:

At the end of the course, the students will be able to -

- CO 1. To provide a better understanding of how systems operate
- CO 2. To respond to change by modeling, simulating, and analyzing performance.
- CO 3. To apply systems modeling and simulation techniques to analyze the performance
- CO 4. To demonstrate proficiency in systems analysis and documentation
- CO 5. To design and model systems using appropriate techniques
- CO 6. To implement and maintain systems

Introduction	(08 Hours)									
aracteristics and types of system, Man	ual and automated systems Real-life									
Marketing, Personal, Material, Financ	e Systems models types of models:									
s, Real-time and distributed systems, B	asic principles of successful systems									
Unit IISystems analyst & System(08 Hours)										
Development cycle										
Development cycleRole and need of systems analyst ,Qualifications and responsibilities ,Systems Analyst as and agent of change, Introduction to systems development life cycle (SDLC): Various phases of Development: Analysis, Design, Development, Implementation, and Maintenance, Systems documentation considerations: Principles of systems documentation, Types of documentation and their importance, Enforcing documentation discipline in an organization.Mapping of Course Outcomes										
System Planning	(08 Hours)									
s: Interviews, Group communicatio ce Types of feasibility reports Syste lysis: Tools and techniques	n, Presentations, Site visits. m Selection plan and proposal									
Mapping of Course Outcomes										
	Introduction aracteristics and types of system, Man Marketing, Personal, Material, Finance s, Real-time and distributed systems, B Systems analyst & System Development cycle Halifications and responsibilities ,Syste at life cycle (SDLC): Various phases Maintenance, Systems documentation of tation and their importance, Enforci System Planning s: Interviews, Group communicatio ce Types of feasibility reports Syste lysis: Tools and techniques									

Process modeling, Logical and physical design, Design representation, Systems flowcharts and structured charts, Data flow diagrams, Common diagramming conventions and guidelines using DFD and ERD diagrams. Data Modeling and systems analysis, Designing the internals: Program and Process design, Designing Distributed Systems. **Mapping of Course Outcomes** Unit V Modular and structured (08 Hours) design & Object Oriented Analysis Classification of forms: Input/output forms design, User-interface design, Graphical interfaces Module specifications, Module coupling and cohesion, Top-down and bottom-up design Introduction to Object Oriented Analysis and design life cycle, object modeling: Class Diagrams, Dynamic modeling: state diagram, Dynamic modeling: sequence diagramming **Mapping of Course Outcomes Unit VI System Implementation** (08 Hours) and Maintenance & Security Planning considerations, Conversion methods, producers and controls, System acceptance Criteria, System evaluation and performance, Testing and validation, Systems qualify Control and assurance, Maintenance activities and issues. Computer system as an expensive resource: Data and Strong media Procedures and norms for utilization of computer equipment, Audit of computer system usage, Audit trails, Types of threats to computer system and control measures: Threat to computer system and control measures, Disaster recovery and contingency planning **Mapping of Course Outcomes Learning Resources Text Books:** 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, Human Computer Interaction, 3rd Edition, Pearson Education, 2004. Wilbert O. Galitz, The Essential Guide to User Interface Design, Wiley publication. 2. 3. Alan Cooper, Robert Reimann, David Cronin, About Face3: Essentials of Interaction design, Wiley publication. 4. Jeff Johnson, Designing with the mind in mind, Morgan Kaufmann Publication. 5. Donald A. Normann, Design of everyday things, Basic Books; Reprint edition 2002.

6. Brian Fling, Mobile Design and Development, First Edition, OReilly Media Inc., 2009.

eBooks:

- 1. "Systems Analysis and Design" by Alan Dennis, Barbara Haley Wixom, and David Tegarden
- 2. "Modern Systems Analysis and Design" by Jeffrey A. Hoffer, Joey George, and Joe Valacich
- 3. "Object-Oriented Systems Analysis and Design Using UML" by Simon Bennett, Steve McRobb, and Ray Farmer

- 1. "Systems Analysis and Design" by Coursera: This course provides a comprehensive introduction to systems analysis and design principles, methodologies, and techniques.
- 2. "Software Engineering: Introduction to Systems Analysis and Design" by edX: Offered by the University of British Columbia, this course covers the fundamentals of systems analysis and design, including requirements engineering and system modeling.
- 3. "Object-Oriented Analysis and Design" by Udemy: This course focuses on object-oriented analysis and design principles using UML notation and is suitable for learners with some prior knowledge of software development.

	<u>@The CO-PO Mapping</u>													
	<u>Matrix</u>													
CO\ PO	PO 1	PO 2	PO 3	PO 4	P O 5	PO 6	PO 7	P O 8	PO 9	PO 10	PO 11	PO 12		
CO1	1	1	2	1	-	-	-	-	-	-	-	-		
CO2	1	2	-	2	-	-	-	-	-	-	-	-		
CO3	2	1	2	1	-	-	-	-	-	-	-	-		
CO4	1	2	-	2	-	-	-	-	-	-	-	-		
CO5	-	-	2	-	-	-	-	-	-	-	-	-		
CO6	-	2	1	2	-	-	-	-	-	-	-	-		
CO7	1	2	2	-	-	-	-	-	-	-	-	-		

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune

PEC-AI 501 (C): Elective 1: Pattern Recognition

Teaching Scheme	Credit Scheme	Examination Scheme and Marks

Lecture: 03 Hours/Week 03

End_Semester (TH): 60

Internal Assessment (TH): 40

Prerequisites: Programming Foundations, Applied Statistics and Statistics for Engineers

Course Objectives:

The objective of this course is:

- 1. To provide a comprehensive understanding of pattern recognition techniques and algorithms.
- 2. To familiarize students with the concepts and principles of supervised and unsupervised learning in pattern classification.
- 3. To introduce students to the principles of structural pattern recognition and its applications.
- 4. To explore feature extraction and selection techniques for pattern recognition.
- 5. To expose students to recent advances in pattern recognition, including neural networks, fuzzy logic, and genetic algorithms.
- 6. To develop practical skills in applying pattern recognition techniques to real-world problems.

Course Outcomes:

CO1: To understand the fundamentals of pattern recognition and the concept of discriminant functions for supervised learning.

CO2: To apply clustering algorithms for unsupervised learning and classification

CO3: To comprehend the elements of formal grammars and their role in structural pattern recognition

CO4: To utilize feature extraction and selection methods

CO5: To explore recent advances in pattern recognition

CO6: To apply pattern recognition techniques to real-world problems.

Unit I	Pattern Classifier	(08 Hours)							
Overview of pattern recognition	- Discriminant functions - Supe	ervised learning – Parametric							
estimation – Maximum likelihood estimation – Bayesian parameter estimation – Perceptron									
algorithm – LMSE algorithm – P	roblems with Bayes approach – Pat	tern classification by distance							
functions – Minimum distance pa	ttern classifier.								
Mapping of Course Outcomes CO1									
Unit IIUnsupervised(08 Hours)									
	Classification								
Clustering for unsupervised learni – Hierarchical clustering procedur clustering solutions.	ng and classification – Clustering c res – Graph theoretic approach to pa	concept – C-means algorithm attern clustering – Validity of							
Mapping of Course Outcomes	CO2								
Unit III	Structural pattern	(08 Hours)							
	recognition								
Elements of formal grammars – Strin	ng generation as pattern description – F	Recognition of syntactic							
description – Parsing – Stochastic gra	ammars and applications – Graph base	d structural representation.							
Mapping of Course Outcomes	CO3								
Unit IV	Feature extraction and	(06 Hours)							
	selection								

Entropy minimization – Karhuner approximation – Binary feature se	n – Loeve transformation – Featur Election.	e selection through functions
Mapping of Course Outcomes	CO 4	
Unit V	Recent Advances	(8 Hours)
Neural network structures for Pa Unsupervised learning in neural I Fuzzy pattern classifiers – Pattern	ttern Recognition – Neural netwo Pattern Recognition – Self-organic classification using Genetic Algorithms	ork based Pattern associators – izing networks – Fuzzy logic – prithms.
Mapping of Course Outcomes	CO5	
Unit VI	Applications of Pattern	(8 Hours)
	Recognition	
Image and Video Recognition, Na	atural Language Processing, Bion	netric Recognition, Pattern
Recognition in Medical Imaging,	Pattern Recognition in Speech an	d Audio Processing, Pattern
Recognition in Data Mining		
Mapping of Course Outcomes	CO6	
Learning Resources		
Text Books:		
 Robert J.Schalkoff, Pattern R & Sons Inc., New York, 199 J.I. Tou & R.C. Gonzalez, Pa R. Schalkoff, Pattern Recogn 1992. 	Recognition Statistical, Structural and 2. attern Recognition Priciples, Addition aition - Statistiucal, Structural and No	l Neural Approaches, John Wiley n-Wesley. eural Approaches, John <i>Wiley,</i>

eBooks:

- 1. "Pattern Recognition and Machine Learning" by Christopher M. Bishop
- 2. "Pattern Classification" by Richard O. Duda, Peter E. Hart, and David G. Stork
- 3. "Machine Learning: A Probabilistic Perspective" by Kevin P. Murphy

- 1. Coursera: "Pattern Recognition and Machine Learning" by Stanford University
- 2. edX: "Pattern Discovery in Data Mining" by University of Illinois at Urbana-Champaign
- 3. Udacity: "Machine Learning Engineer Nanodegree" by Udacity

	The CO-PO Mapping												
Matrix													
CO\ PO	PO 1	PO 2	PO 3	PO 4	P O 5	PO 6	PO 7	P O 8	PO 9	PO 10	PO 11	PO 12	
CO1	1	1	2	1	-	-	-	-	-	-	-	-	
CO2	1	2	-	2	-	-	-	-	-	-	-	-	
CO3	2	1	2	1	-	-	-	-	-	-	-	-	
CO4	1	2	-	2	-	-	-	-	-	-	-	-	
CO5	-	-	2	-	-	-	-	-	-	-	-	-	
CO6	-	2	1	2	-	-	-	-	-	-	-	-	
CO7	1	2	2	-	-	-	-	-	-	-	-	-	

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PEC-AI 501 (D): Elective 1: Internet of Medical Behaviour

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	03	Internal Assessment (TH): 40

End_Semester (TH): 60

Prerequisites: Understanding of function systems, adequate statistics related to Machine Learning and Artificial Intelligence at the identical time and gist of sensors is additionally required in this field

Course Objectives: The objective of this course is:

- 1. To develop knowledge in Internet of Things (IoT) and Industrial Internet of Things (IIoT) fundamentals.
- 2. To gain conceptual understanding of networking and wireless communication protocols used in IIoT deployments
- 3. To Understand the various Internet of Things (IoT) Protocols like COAP, MQTT.etc

Course Outcomes:

At the end of the course, the students will be able to -

- CO 1. Develop conceptual design of Medical and Industrial IoT architecture.
- CO 2. Apply sensors and various protocols for industry standard solutions
- CO 3. Articulate privacy and security measures for industry standard solutions.

CO 4. Study about Internet of Medical Things (IoMT) and its applications in Healthcare industry.

CO 5 Design various applications using IoT in Healthcare Technologies.

CO 6. Demonstrate and build the project successfully by hardware/sensor requirements, coding, emulating and testing.

Unit I	Introduction	(04 Hours)								
Introduction to IOT, What is IIOT?	IOT Vs. IIOT, History of IIOT, Comp	oonents of IIOT - Sensors, Interface,								
Networks, Key terms – IOT Pla	tform, Interfaces, API, clouds, Dat	a Management Analytics, Mining								
&Manipulation Role of IIOT in Manufacturing Processes Use of IIOT in plant maintenance practices,										
Sustainability through Business excellence tools Challenges & Benefits in implementing IIOT										
Mapping of Course Outcomes CO1										
Unit II	IoT Architecture	(04 Hours)								
IOT components ; Various Architectures of IOT and IIOT, Advantages & disadvantages, Industrial Internet -										
Reference Architecture; IIOT System	n components: Sensors, Gateways, Rou	ters, Modem, Cloud brokers,								
servers and its integration, WSN, WS	SN network design for IOT									
Mapping of Course Outcomes	CO2									
Unit IIISensors and Protocols(05 Hours)										
Unit III	Sensors and Protocols	(05 Hours)								
Introduction to sensors, Roles of sens	Sensors and Protocols sors in IIOT, Various types of sensors,	(05 Hours) Design of sensors, sensor								
Introduction to sensors, Roles of sens architecture, special requirements for	Sensors and Protocols sors in IIOT, Various types of sensors, IIOT sensors, Role of actuators, types	(US Hours) Design of sensors, sensor of actuators. Need of protocols;								
Introduction to sensors, Roles of sens architecture, special requirements for Types of Protocols, Wi-Fi, Wi-Fi dir	Sensors and Protocols sors in IIOT, Various types of sensors, IIOT sensors, Role of actuators, types ect, Zigbee, Z wave, Bacnet, BLE, Moo	(US Hours) Design of sensors, sensor of actuators. Need of protocols; dbus, SPI , I2C, IIOT protocols –								
Introduction to sensors, Roles of sens architecture, special requirements for Types of Protocols, Wi-Fi, Wi-Fi dir COAP, MQTT, 6lowpan, lwm2m, A	Sensors and Protocols sors in IIOT, Various types of sensors, IIOT sensors, Role of actuators, types ect, Zigbee, Z wave, Bacnet, BLE, Moo MPQ. Hardwire the sensors with differ	(05 Hours) Design of sensors, sensor of actuators. Need of protocols; dbus, SPI, I2C, IIOT protocols – ent protocols such as HART,								
Introduction to sensors, Roles of sens architecture, special requirements for Types of Protocols, Wi-Fi, Wi-Fi dir COAP, MQTT, 6lowpan, lwm2m, A MODBUS-Serial & Parallel, Etherne	Sensors and Protocols sors in IIOT, Various types of sensors, IIOT sensors, Role of actuators, types ect, Zigbee, Z wave, Bacnet, BLE, Mod MPQ. Hardwire the sensors with differ et, BACNet.	(US Hours) Design of sensors, sensor of actuators. Need of protocols; dbus, SPI, I2C, IIOT protocols – ent protocols such as HART,								
Introduction to sensors, Roles of sens architecture, special requirements for Types of Protocols, Wi-Fi, Wi-Fi dir COAP, MQTT, 6lowpan, lwm2m, A MODBUS-Serial & Parallel, Etherne Mapping of Course Outcomes	Sensors and Protocols sors in IIOT, Various types of sensors, r IIOT sensors, Role of actuators, types ect, Zigbee, Z wave, Bacnet, BLE, Moo MPQ. Hardwire the sensors with differ et, BACNet. CO3	(US Hours) Design of sensors, sensor of actuators. Need of protocols; dbus, SPI, I2C, IIOT protocols – ent protocols such as HART,								
Introduction to sensors, Roles of sens architecture, special requirements for Types of Protocols, Wi-Fi, Wi-Fi dir COAP, MQTT, 6lowpan, lwm2m, A MODBUS-Serial & Parallel, Etherne Mapping of Course Outcomes	Sensors and Protocols sors in IIOT, Various types of sensors, IIOT sensors, Role of actuators, types ect, Zigbee, Z wave, Bacnet, BLE, Moo MPQ. Hardwire the sensors with differ et, BACNet. CO3	(05 Hours) Design of sensors, sensor of actuators. Need of protocols; dbus, SPI, I2C, IIOT protocols – ent protocols such as HART,								
Introduction to sensors, Roles of sens architecture, special requirements for Types of Protocols, Wi-Fi, Wi-Fi dir COAP, MQTT, 6lowpan, lwm2m, A MODBUS-Serial & Parallel, Etherne Mapping of Course Outcomes Unit IV	Sensors and Protocols sors in IIOT, Various types of sensors, IIOT sensors, Role of actuators, types ect, Zigbee, Z wave, Bacnet, BLE, Moo MPQ. Hardwire the sensors with differ et, BACNet. CO3 Privacy and Security	(05 Hours) Design of sensors, sensor of actuators. Need of protocols; dbus, SPI, I2C, IIOT protocols – ent protocols such as HART, (05 Hours)								
Introduction to sensors, Roles of sens architecture, special requirements for Types of Protocols, Wi-Fi, Wi-Fi dir COAP, MQTT, 6lowpan, lwm2m, A MODBUS-Serial & Parallel, Etherne Mapping of Course Outcomes Unit IV	Sensors and Protocols sors in IIOT, Various types of sensors, : IIOT sensors, Role of actuators, types ect, Zigbee, Z wave, Bacnet, BLE, Moo MPQ. Hardwire the sensors with differ et, BACNet. CO3 Privacy and Security	(05 Hours) Design of sensors, sensor of actuators. Need of protocols; dbus, SPI, I2C, IIOT protocols – ent protocols such as HART, (05 Hours)								
Introduction to sensors, Roles of sens architecture, special requirements for Types of Protocols, Wi-Fi, Wi-Fi dir COAP, MQTT, 6lowpan, lwm2m, A MODBUS-Serial & Parallel, Etherne Mapping of Course Outcomes Unit IV Introduction to web security, Conven	Sensors and Protocols sors in IIOT, Various types of sensors, : IIOT sensors, Role of actuators, types ect, Zigbee, Z wave, Bacnet, BLE, Moo MPQ. Hardwire the sensors with differ et, BACNet. CO3 Privacy and Security tional web technology and relationship	(05 Hours) Design of sensors, sensor of actuators. Need of protocols; dbus, SPI , I2C, IIOT protocols – ent protocols such as HART, (05 Hours) with IIOT, Vulnerabilities of IoT,								
Introduction to sensors, Roles of sense architecture, special requirements for Types of Protocols, Wi-Fi, Wi-Fi dir COAP, MQTT, 6lowpan, lwm2m, A MODBUS-Serial & Parallel, Etherner Mapping of Course Outcomes Unit IV Introduction to web security, Conven Privacy, Security requirements, Thre	Sensors and Protocols sors in IIOT, Various types of sensors, IIOT sensors, Role of actuators, types ect, Zigbee, Z wave, Bacnet, BLE, Moo MPQ. Hardwire the sensors with differ et, BACNet. CO3 Privacy and Security at analysis, Trust, IoT security tomogra	(05 Hours) Design of sensors, sensor of actuators. Need of protocols; dbus, SPI , I2C, IIOT protocols – ent protocols such as HART, (05 Hours) with IIOT, Vulnerabilities of IoT, uphy and layered attacker model,								

Mappin	g of Co	urse Ot	itcomes	CO4	1							
								0				
	Unit V IoMT Introduction & (03 Hours) Healthcare Technologies											
What are integratic Home M Delivery Environn	IoMT a on of clin onitoring System nent Mor	nd its w ical data g System for Auto nitoring o	orking? ' , Major b for Age mated D of Infecti	Tracking penefits ed Care, rug Disp ous Dise	g assets a of IoT in Smart I pensation pases	and reson healthca Medicina h, Conne	urces, In are, Disa 1 Packag cted Rur	ternet of dvantage ges for N al Healt	things i es of IoT dedicatio hcare Co	n hospita in health n Adher nsultatio	als, colle icare. ence, Sn n, Popul	ction and hart Drug ation and
Mappin	g of Co	urse Ot	itcomes		>							
	Uni	t VI		A	Applica Ca	ation E ase Stu)esign Idy	&		(03H	ours)	
Applicat Applicat	ion Desig	gn & Ca gn: Desig	se Study: on of IO	Wireles	ss Patien	t Monito imeter, F	r system eliability	, Wearat	ole Fitnes Aware F	ss & Acti BPNM H	vity Mor ealthcare	nitor process.
Mappin	g of Co	urse Ou	itcomes	CO	6							<u>r</u>
Learni	ng Res	ource	S									
Text B 1. A L L 2. A	ooks: Alessandr Lange and Architect Towards	o Bassi, d Stefan ure Refe Cognitiv	Martin I Meissner rence Mo e IoT Ne	Bauer, M r, Enabli odel, 1 st tworks,	lartin Fid ng thing t edition 1 st edit	edler, Th s to talk ,Springe ion ,Spri	orsten Ki –Designi r Open, 2 nger Inte	ramp, Ro ing IoT s 2016 Ma rnationa	ob van K solutions tin, Moh l Publish	ranenbur with the ammad 4 ing, 2020	rg, Sebas IoT. Abdul, ec).	tian I.
				@	The C	O-PO	Mappi	ing				
					I	Matri	<u>x</u>	I	T	I	1	I
CO\ PO	PO 1	PO 2	PO 3	PO 4	P 0 5	PO 6	PO 7	P 0 8	PO 9	PO 10	PO 11	PO 12
CO1	1	1	2	1	-	-	-	-	-	-	-	-
CO2	1	2	-	2	-	-	-	_	-	-	-	-
CO3	2	1	2	1	-	-	-	-	-	-	-	-
CO4	1	2	-	2	-	-	-	-	-	-	-	-
CO5	-	-	2	-	-	-	-	-	-	-	-	-
CO6	-	2	1	2	-	-	-	-	-	-	-	-
007	1	2	2	-	-	-	_	_	_	_	_	İ

SEMESTER VI								
Course Code	Course Name	L	Т	Р	Hr	Cr		
PCC-AI 601	Advanced Databases	3	0	2	5	4		
PCC-AI 602	Deep Learning	3	0	2	5	4		
PCC-AI 603	Machine Learning & Network Security	3	0	2	5	4		
PCC-AI 604	Information Retrieval	2	0	0	2	2		
PEC-AI 601	Elective II	3	0	0	3	3		
PEC-AI 601	Skill Enhancement Course-II/ Internship	3	0	0	3	3		
	17	0	6	23	20			
Elective II (A-Software architecture, B-Quantum AI, C-Robotics and Automation, D-Cognitive								
Computing)								
Skill Enhancement Course II Language-II: (Foreign Language (French/German/Japanese)/								
Hindi/Marathi)/ Internship of 1 month.								

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PCC-AI 601: Advanced Databases

Teaching Scheme	Credit Scheme	Examination Scheme and Marks		
Lecture: 03 Hours/Week	04	Internal Assessment (TH): 40		
		End_Semester (TH): 60		

Prerequisites: Students must have fundamental knowledge of data structures & SQL queries

Course Objectives:

- 1. To understand fundamental structure of various databases.
- 2. To understand various types of databases.
- 3. To understand parallel and distributed Databases
- 4. To provide the practical knowledge in handling and analyzing real world applications in databases.

Course Outcomes:

Upon successful completion of this course, students will be able to:

- **CO 1.** Assess various storage and retrieval methods through appropriate indexing
- CO 2. Design and analyze efficiency of algorithms for database operations
- CO 3. Comprehend contemporary database architectures and its relevant issues
- CO 4. Evaluate different data storage techniques and select appropriate indexing structures for efficient retrieval.
- CO 5. Develop optimized query execution plans and apply query optimization techniques
- CO 6. Demonstrate understanding of advanced database concepts

Unit I	Data storage	(05 Hours)						
Overview of RDBMS concepts, Basic File Structures, File Organization & Record formats, Heap sorted								
& Hashed Files, Buffer management, Disk Storage, Parallel Disk access with RAID, Modern Storage								
Architectures								
Mapping of Course Outcomes	CO1							
Unit II	Indexing Structures	(08 Hours)						
Single level and Multilevel Indexes, B Tree and B+ Tree Indexes, Hash and bitmap-based indexing,								
Index Structures for Single Dimensional and Multidimensional Databases								
Mapping of Course Outcomes	Mapping of Course Outcomes CO2							
Unit III	Query Processing	(09 Hours)						
Query Execution, Algebra for Queries, Physical-Query-Plan-Operators, Algorithms for Database								
Operations, Algorithms for Joins and Sorting, hash and index based algorithms, Buffer Management,								
Parallel Algorithms for Relational Operators								
Manning of Course Outcomes	nes CO3							
Mapping of Course Outcomes	CO3							
Mapping of Course Outcomes	CO3							
Unit IV	CO3 Query Optimization	(08 Hours)						
Unit IV	CO3 Query Optimization	(08 Hours)						
Unit IV Algebraic Foundation for Improv	CO3 Query Optimization ing Query Plans, Estimating Cost of Op	(08 Hours) erations, Cost Based Plan						
Unit IV Algebraic Foundation for Improv Selection, Choosing Order of Join	CO3 Query Optimization ing Query Plans, Estimating Cost of Op ns, Optimization of Queries for Parallel,	(08 Hours) erations, Cost Based Plan Distributed,						

Mapping of Course Outcomes	CO4						
Unit V	Transactions, Concurrency control and Recovery	(07Hours)					
Transaction scheduling, serializability, Coping with System Failure, Concurrency Control techniques with locking, timestamp ordering and multiversion, Redo and Undo log based recovery, recovery in multi database systems							
Mapping of Course Outcomes	CO5						
Unit VI	Advances in database systems	(08 Hours)					
Distributed database systems, fragmentation, replication and allocation techniques, NoSQL based systems: key-value based, document based, column based and Graph databases, Streaming SQL, Introduction to active, temporal, spatial, multimedia and deductive databases.							
Mapping of Course Outcomes	CO6						
	List of Practicals						
 Data Definition Language Commands Data Manipulation Language Commands Data Control Language, Transfer Control Language Commands In Built Functions Nested Queries And Join Queries Set operators Views Control Structure Procedure and Function Trigger 							
Learning Resources							
Text Books:							
 RamezElmasri, Shamkant B Navathe, Fundamentals of Database System, Pearson Education Garcia Molina, Ullman, Widom, Data Base System Implementation, Pearson education Raghu Ramakrishnan& Johannes Gehrke, Database Management Systems, McGraw Hill 							

- Kurda Kurdaki Sintance Solance, Dutabase Ivitangenient Systems, WeGraw Hill
 Silberschatz, Korth, Sudarshan, Database System Concepts, McGraw Hill
 M.TamerOzsu, Patrick Valduriez, S.Sridhar, Principles of Distributed Database Systems, Pearson Education

eBooks:

- 1. "Database Management Systems" by Raghu Ramakrishnan and Johannes Gehrke
- 2. "Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S. Sudarshan
- 3. "Modern Database Management" by Jeffrey A. Hoffer, Ramesh Venkataraman, and Heikki Topi

- 1. "Introduction to Databases" by Stanford Online (Coursera)
- 2. "Database Management Essentials" by University of Colorado System (Coursera)
- 3. "Database Systems Concepts and Design" by Georgia Institute of Technology (edX)

<u>@The CO-PO Mapping</u> <u>Matrix</u>												
CO\ PO	PO 1	PO 2	PO 3	PO 4	P O 5	PO 6	PO 7	P O 8	PO 9	PO 10	PO 11	PO 12
CO1	1	1	2	1	-	-	-	-	-	-	-	-
CO2	1	2	-	2	-	-	-	-	-	-	-	-
CO3	2	1	2	1	-	-	-	-	-	-	-	-
CO4	1	2	-	2	-	-	-	-	-	-	-	-
CO5	-	-	2	-	-	-	-	-	-	-	-	-
CO6	-	2	1	2	-	-	-	-	-	-	-	-
C07	1	2	2	-	-	-	-	-	-	-	-	-
PCC-AI 602: Deep Learning

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Week	04	Internal Assessment (TH): 40
		End _Semester (TH): 60

Prerequisites: Students must have knowledge of linear algebra, calculus, programming skills, probability, and Statistics. Students also must have fundamental knowledge of Machine Learning.

Course Objectives:

- 1. To understand the theoretical foundations, algorithms and methodologies of Neural Network
- 2. To design and develop an application using specific deep learning models.
- 3. To provide the practical knowledge in handling and analyzing real world applications.

Course Outcomes:

Upon successful completion of this course, students will be able to:

- CO 1. To recognize the characteristics of deep learning models that are useful to solve real-world problems.
- **CO 2.** To differentiate different methodologies to create application using deep nets

CO 3.To identify and apply appropriate deep learning algorithms for analyzing the data for variety of problems.

CO 4. To implement different deep learning algorithms.

- CO 5. To design the test procedures to assess the efficacy of the developed model
- CO 6. To apply deep learning techniques to solve real-world problems in various domains

Unit I	Introduction	(03 Hours)							
Biological Neuron, Idea of computational units, McCulloch–Pitts unit and Thresholding logic, Linear									
Perceptron, Perceptron Learning Algorithm, Linear separability. Convergence theorem for Perceptron									
Learning Algorithm.									
Mapping of Course	Image: Apping of Course CO1								
Outcomes									
Unit II	Feedforward Network	(07 Hours)							
Multilayer Perceptron, Gradient Descent, Backpropagation, Empirical Risk Minimization, regularization, auto encoders									
Mapping of Course CO2									
Outcomes									
Unit IIIDeep Neural Networks(09 Hours)									
Unit III	Deep Neural Networks	(09 Hours)							
Unit III Difficulty of training deep to Newer optimization methods order methods for training, (dropout, drop connect, bat	Deep Neural Networks neural networks, Greedy layerwise training. ds for neural networks (Adagrad, adadelta, rmsprop, Saddle point problem in neural networks, Regulariz tch normalization).	(09 Hours) adam, NAG), second ation methods							
Unit III Difficulty of training deep to Newer optimization method order methods for training, (dropout, drop connect, bath Mapping of Course	Deep Neural Networks neural networks, Greedy layerwise training. ds for neural networks (Adagrad, adadelta, rmsprop, Saddle point problem in neural networks, Regulariz tch normalization). CO3	(09 Hours) adam, NAG), second ation methods							
Unit III Difficulty of training deep to Newer optimization methods order methods for training, (dropout, drop connect, bath Mapping of Course Outcomes	Deep Neural Networks neural networks, Greedy layerwise training. ds for neural networks (Adagrad, adadelta, rmsprop, Saddle point problem in neural networks, Regulariz tch normalization). CO3	(09 Hours) adam, NAG), second ation methods							
Unit III Difficulty of training deep to Newer optimization methods order methods for training, (dropout, drop connect, bath Mapping of Course Outcomes Unit IV	Deep Neural Networks neural networks, Greedy layerwise training. ds for neural networks (Adagrad, adadelta, rmsprop, Saddle point problem in neural networks, Regulariz tch normalization). CO3 Recurrent Neural Networks	(09 Hours) adam, NAG), second ation methods (07 Hours)							

Outcomes	CO4						
Unit V	Convolutional Neural Netwo	orks &	(09 Hours)				
	Deep Generative Mode	ls	(0) 110013)				
Architectural Overview – M CNN Architectures: LeNet Restrictive Boltzmann Mac computations in RBMs, De	Iotivation - Layers – Filters –Paramete AlexNet. hines (RBMs), Introduction to MCMC ep Boltzmann Machines	r sharing – Regu and Gibbs Samp	llarization, Popular pling, gradient				
Mapping of Course	Iapping of Course CO5						
Unit VI	Recent trends and App	lications	(07 Hours)				
Variational Autoencoders, Deep Learning. Vision, NL	Generative Adversarial Networks, Mult P, Speech.	i-task Deep Lea	rning, Multi-view				
Mapping of Course Outcomes	CO6						
	List of Practical						
 Deep learning Packages Basics: Tensorflow, Keras, Theano and PyTorch Classification of MNIST Dataset using CNN Face recognition using CNN Object detection using Transfer Learning of CNN architectures Recommendation system using Deep Learning Dimensionality Reduction using Deep learning Time Series Prediction using RNN Language Modeling using RNN Sentiment Analysis using LSTM 							
12. Image generation	sis using LSTM a using GAN						
12. Image generation	sis using LSTM a using GAN						
Internet Print 12. Image generation Learning Resources Text Books: 1. Neural Networks: A S 2. Ian Goodfellow, Yosh 3. Michael A. Nielsen, N 4. Yoshua Bengio, Learn 5. Josh Patterson, Adam 6. Umberto Michelucci * Networks" Apress, 2018	sis using LSTM a using GAN ystematic Introduction, Raúl Rojas, 1996 ua Bengio and Aaron Courville, Deep Lea eural Networks and Deep Learning , Deter ing Deep Architectures for AI, now Publis Gibson "Deep Learning: A Practitioner's A Applied Deep Learning. A Case-based Ap	rning, MIT Press, mination Press, 2 hers Inc., 2009 approach", O'Reill proach to Underst	2016 015 ly Media, 2017. tanding Deep Neural				
11. Sentiment Analy 12. Image generation Learning Resources Text Books: 1. Neural Networks: A S 2. Ian Goodfellow, Yosh 3. Michael A. Nielsen, N 4. Yoshua Bengio, Learn 5. Josh Patterson, Adam 6. Umberto Michelucci ' Networks'' Apress, 2018	sis using LSTM a using GAN ystematic Introduction, Raúl Rojas, 1996 ua Bengio and Aaron Courville, Deep Lea eural Networks and Deep Learning , Deter ing Deep Architectures for AI, now Publis Gibson "Deep Learning: A Practitioner's A Applied Deep Learning. A Case-based Ap	rning, MIT Press, mination Press, 2 hers Inc., 2009 approach", O'Reill proach to Underst	2016 015 ly Media, 2017. tanding Deep Neural				
11. Sentiment Analy 12. Image generation 12. Image generation Learning Resources Text Books: 1. Neural Networks: A S 2. Ian Goodfellow, Yosh 3. Michael A. Nielsen, N 4. Yoshua Bengio, Learn 5. Josh Patterson, Adam 6. Umberto Michelucci ' Networks'' Apress, 2018 e-Books: 1. "Deep Learning" by	sis using LSTM a using GAN ystematic Introduction, Raúl Rojas, 1996 ua Bengio and Aaron Courville, Deep Lea eural Networks and Deep Learning , Deter ing Deep Architectures for AI, now Publis Gibson "Deep Learning: A Practitioner's A Applied Deep Learning. A Case-based Ap	rning, MIT Press, mination Press, 2 hers Inc., 2009 approach", O'Reill proach to Underst	2016 015 ly Media, 2017. tanding Deep Neural				
 11. Sentiment Analy 12. Image generation Learning Resources Text Books: Neural Networks: A S Ian Goodfellow, Yosh Michael A. Nielsen, N Yoshua Bengio, Learn Josh Patterson, Adam Umberto Michelucci ' Networks" Apress, 2018 e-Books: "Deep Learning" by "Neural Networks a 	sis using LSTM a using GAN ystematic Introduction, Raúl Rojas, 1996 ua Bengio and Aaron Courville, Deep Lea eural Networks and Deep Learning , Deter ing Deep Architectures for AI, now Publis Gibson "Deep Learning: A Practitioner's A Applied Deep Learning. A Case-based Ap Ian Goodfellow, Yoshua Bengio, and A ad Deep Learning: A Textbook" by Cha	rning, MIT Press, mination Press, 2 hers Inc., 2009 Approach", O'Reill proach to Underst Aaron Courville aru C. Aggarwal	2016 015 ly Media, 2017. tanding Deep Neural				

MOOC/ Video Lectures available at:

- 1. "Deep Learning Specialization" by deeplearning.ai (Coursera)
- 2. "Neural Networks for Machine Learning" by University of Toronto (Coursera)
- 3. "Deep Learning" by Stanford University (Coursera)

	<u>@The CO-PO Mapping</u>											
	<u>Matrix</u>											
CO\ PO	PO 1	PO 2	PO 3	PO 4	P O 5	PO 6	PO 7	P O 8	PO 9	PO 10	PO 11	PO 12
CO1	1	1	2	1	-	-	-	-	-	-	-	-
CO2	1	2	-	2	-	-	-	-	-	-	-	-
CO3	2	1	2	1	-	-	-	-	-	-	-	-
CO4	1	2	-	2	-	-	-	-	-	-	-	-
CO5	-	-	2	-	-	-	-	-	-	-	-	-
CO6	-	2	1	2	-	-	-	-	-	-	-	-
CO7	1	2	2	-	-	-	-	-	-	-	-	-

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PCC-AI 603: Machine Learning & Network Security

Teaching Scheme	Credit Scheme	Examination Scheme and Marks		
Lecture: 03 Hours/Week	04	Internal Assessment (TH): 40		
		End _Semester (TH): 60		

Prerequisites: Students also must have fundamental knowledge of Machine Learning and Computer Networks.

Course Objectives:

- 1. To study how machine learning can help in securing data.
- 2. To learn how machine learning has contributed to the success of filters
- 3. To understand quick way to detect anomalies
- 4. To conduct malware analysis by extracting used information from computer binaries
- 5. To examine how attackers exploit consumer-facing websites and app functionality
- 6. To translate your machine learning algorithms from the lab to production

Course Outcomes:

Upon successful completion of this course, students will be able to:

- CO 1 Learn different machine learning algorithms to secure information
- CO 2. Implement filtering methods using machine learning techniques
- **CO 3.** Analyze different methods of detecting anomalies.
- **CO 4.** Perform malware analysis using information
- CO 5. Visualize the attacks on consumer websites
- CO 6. Model machine learning based model to create a production system

Unit I	Convergence of Machine Learning and Network	(06 Hours)						
	Security							
Cyber Threat Landscape, The Cyber Attacker's Economy, Overview of Machine Learning, Real-World Uses of								
Machine Learning in Securit	Machine Learning in Security, Spam Fighting: An Iterative Approach							
Mapping of Course	CO1							
Outcomes								
Unit II	Anomaly Detection	(07 Hours)						
Anomaly Detection Versus Supervised Learning, Intrusion Detection with Heuristics, Data-Driven Methods, Feature Engineering for Anomaly Detection, Anomaly Detection with Data and Algorithms Challenges of Using Machine Learning in Anomaly Detection								
Mapping of Course	CO2							
Outcomes								
Unit III	Malware Analysis	(07						
		Hours)						
Understanding Malware, Feature Generation, From Features to Classification, Live malware analysis, dead malware analysis, Android Malware Analysis.								
Mapping of Course Outcomes	CO3							
Unit IV	Network Traffic Analysis	(07Hours)						

Theory	Theory of Network Defense, Machine Learning and Network Security, Building a Predictive Model											
to Classify Network Attacks												
Mannin	g of Co	ourse	CC)4								
Outcom	ig of Co les	uise		•								
	Unit V	7		Protecting the Consumer Web (07 Hours)								
Monetiz Learning	Monetizing the Consumer Web, Types of Abuse and the Data That Can Stop Them, Supervised Learning for Abuse Problems, Clustering Abuse											
Mappin Outcom	ng of Co nes	ourse	CC	CO5								
1	Unit V	Ί			Pro	oducti	on Sys	tems			(07	Hours)
Definin	g Machi	ine Lea	rning Sy	stem M	laturity	and Sca	lability,	Data Q	Quality, I	Model (Quality,	
Perform	nance, N	Iaintain	ability,	Monito	ring and	l Alertin	ıg, Secu	rity and	l Reliabi	ility		
Mappin Outcom	ng of Co nes	ourse	CC	6								
					List	t of Pra	actical					
2. 5 3. I 4. 5 Learni	Live mal Study and	d implen ware ana d implen	alysis usi nent clus	ing unsuger	pervised	l learning	algorith	1 1m				
Text B	Books:											
1. (Clarence 9781491	Chio, D 979907	avid Fre	eman "N	Iachine	Learning	g and Sec	curity", (O'Reilly	Media,	Inc.ISBN	
2. 3	SumeetD 14398394	ua, Xiar 423	n Du. "D	ata Mini	ng and M	Vlachine	Learning	g in Cyb	ersecurit	y", CRU	Press, R	SBN:978-
	Learning	Nessus Applies	for Pene	tration T	esting, l	by Himai · Finding	nshu Ku and Evi	mar aloiting	Security	Flaws '	2ed	
5. N	Masterin	g Moder	n Web F	enetratio	on Testir	ng by Pra	akhar Pra	asad	security	1 14 105, 1	200	
e-Bool	KS:											<u>H</u>
 "Net and "Pra "Net 	 "Network Security: Private Communication in a Public World" by Charlie Kaufman, Radia Perlman, and Mike Speciner "Practical Packet Analysis: Using Wireshark to Solve Real-World Network Problems" by Chris Sanders "Network Security Essentials: Applications and Standards" by William Stallings 											
MOO	C/ Vid	eo Leo	ctures	availa	ble at:	1						
1. "	'Machine	e Learnii	ng" by S	tanford I	Universi	ty on Co	ursera					
2. "	Deep Le	earning S	Specializ	ation" b	y deeple	arning.ai	on Cour	rsera				
3.	Machine	e Learni	ng with I	ython"	by IBM	on Cours	sera					
				<u>@</u> [The Co	<u>O-PO </u> Matrix	<u>Mappi</u>	ng				
CO\ PO	PO 1	PO 2	PO 3	PO 4	P 0 5	PO 6	PO 7	P O 8	PO 9	PO 10	PO 11	PO1 2
CO1	1	1	2	1	-	-	-	-	-	-	-	-

CO2	1	2	-	2	-	-	-	-	-	-	-	-
CO3	2	1	2	1	-	-	-	-	-	-	-	-
CO4	1	2	-	2	-	-	-	-	-	-	-	-
CO5	-	-	2	-	-	-	-	-	-	-	-	-
CO6	-	2	1	2	-	-	-	-	-	-	-	-
CO7	1	2	2	-	-	-	-	-	-	-	-	-

PCC-AI 604: Information Retrieval

Teaching SchemeCredit SchemeExamination Scheme and MarksLecture: 02 Hours/Week02Internal Assessment (TH): 20End_Semester (TH): 30

Prerequisites: Students must have the minimal concept of Data Base Management Systems.

Course Objectives:

- 1. To enable students to understand the various aspects of an Information retrieval system and its evaluation and to be able to design
- 2. To understand the fundamental techniques for hypermedia architectures, design and usability, document management and retrieval, metadata management, and searching the web.
- 3. To analyse ranked retrieval of a very large number of documents with hyperlinks between them.

Course Outcomes:

- Upon successful completion of this course, students will be able to:
- CO 1. To apply IR principles to locate relevant information large collections of data.
- **CO 2.** To design different document clustering algorithms
- CO 3. To implement retrieval systems for web search tasks.
- CO 4. To design an Information Retrieval System for web search tasks.
- **CO 5.** To analyze and address ethical considerations and challenges
- CO 6. To explore and understand the impact of information retrieval systems on society

Unit I	Introduction and Basic IR Models	(04 Hours)								
Goals and history of IR. The im	Goals and history of IR. The impact of the web on IR. Boolean and vector-space retrieval models;									
ranked retrieval; text-similarity	metrics; TF-IDF (term frequency/inverse docum	nent frequency)								
weighting; cosine similarity.										
Mapping of Course Outcomes	C01									
Unit II	Vector-Space Retrieval (05 Ho									
	&									
	Experimental Evaluation									
Simple tokenizing, stop-word rem	noval, and stemming; inverted indices; efficient proce	ssing with								
sparse vectors										
Performance metrics: recall, preci collections	sion, F-measure, and NDCG; Evaluations on benchm	nark text								
Mapping of Course Outcomes	CO2									
Unit III	Ouery Expansion & Text	(05								
	Representation	Hours)								
Relevance feedback; Query expan	nsion.									
Word statistics; Zipf's law; Porter	stemmer; morphology; index term selection; using the	hesauri.								
Mapping of Course Outcomes	CO3									
Unit IV	Web Search	(02								
		Hours)								

Search engines; spidering; metacrawlers; directed spidering; link analysis (e.g. hubs and authorities, Google PageRank); shopping agents.						
Mapping of Course Outcomes	CO4					
Unit V	Text Categorization & Text Clustering	g (06 Hours)				
Categorization algorithms: Rocchio, nearest neighbor, and naive Bayes. Applications to info filtering and organization. Clustering algorithms: agglomerative clustering; k-means; expec maximization (EM). Applications to web search and information organization						
Mapping of Course Outcomes	CO5					
Unit VILanguage-Model Based Retrieval & Recommender Systems(05 Hour (05 Hour (05 Hour (05 Hour (05 Hour (05 Hour (05 Hour (05 Hour 						
Using naive Bayes text classificat Collaborative filtering and conter Privacy, Fairness, Fake news and extremism, Internet addiction.	tion for ad hoc retrieval. Improved smoothing f at-based recommendation of documents and pro disinformation, Filter bubble, Viewpoint diver	or document retrieval. oducts. sity, Fostering				
Mapping of Course Outcomes	CO6					
Text Books:	1					
 Information Storage and Ret Kowalski, Mark T. Mayburg Christopher D. Manning, Pr 	trieval Systems – Theory and Implementation, Seco y, Springer abhakar Raghavan and Hinrich Schütze, Introductio	ond Edition, Gerald J.				
Retrieval, Cambridge Univer book.html Ian Goodfellow,	rsity Press. 2008. http://nlp.stanford.edu/IR-book/ii Yoshua Bengio and Aaron Courville, Deep Learnin	nformation-retrieval- ig, MIT Press, 2016				
3. ChengXiang Zhai, Statistica Human Language Technolo Deep Architectures for AI, r	a Language Models for Information Retrieval (Synt gies), Morgan & Claypool Publishers, 2008. Yoshu now Publishers Inc., 2009	a Bengio, Learning				
4. Frakes, W.B., Ricardo Baez Hall, 1992	a-Yates: Information Retrieval Data Structures and	Algorithms, Prentice				
5. Information Storage & Retri6. Modern Information Retriev	ieval By Robert Korfhage – John Wiley & Sons. val By Yates and Neto Pearson Education.					

eBooks:

- 1. "Introduction to Information Retrieval" by Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze
- 2. "Modern Information Retrieval: The Concepts and Technology behind Search" by Ricardo Baeza-Yates and Berthier Ribeiro-Neto

MOOC/ Video Lectures available at:

- 1. "Information Retrieval (IR): Representation and Retrieval of Textual Information" by University of Illinois at Urbana-Champaign (Coursera)
- 2. "Introduction to Information Retrieval" by Stanford University (edX)

	@The CO PO Manning											
	<u>Wotriy</u>											
GOL								-				-
	PO	PO	PO	PO	P	PO	PO	P	PO	PO	PO	PO
PO		2	3	4		0		U O	9	10	11	12
					5			8				
CO1	1	1	2	1	-	-	-	-	-	-	-	-
CO2	1	2	-	2	-	-	-	-	-	-	-	-
CO3	2	1	2	1	-	-	-	-	-	-	-	-
CO4	1	2	-	2	-	-	-	-	-	-	-	-
CO5	-	-	2	-	-	-	-	-	-	-	-	-
CO6	-	2	1	2	-	-	-	-	-	-	-	-
CO7	1	2	2	-	-	-	-	-	-	-	-	-

PEC-AI 601 (A): Elective-II Software Architecture

Teaching Scheme	Credit Scheme	Examination Scheme and Marks		
Lecture: 03 Hours/Week	03	Internal Assessment (TH): 40		
		End_Semester (TH): 60		

Prerequisites: Programming Language, UML: Architecture of the building,

Course Objectives:

The objective of this course is:

- 1. To understand the need, design approaches for software architecture to bridge the dynamic requirements and implementation.
- 2. To learn the design principles and to apply for large scale systems
- 3. To design architectures for distributed heterogeneous systems, environment through brokerage interaction

Course Outcomes:

At the end of the course, the students will be able to -

CO 1. To understand the need of software architecture for sustainable dynamic systems.

CO 2. To apply design principles and to apply for large scale systems

CO 3. To design architectures for distributed heterogeneous systems

CO 4. To use service oriented and model driven architectures and the aspect oriented architecture.

CO 5. To develop appropriate architectures through various case studies.

CO6. To understand the concepts of Model-Driven Architecture (MDA) and Cloud Computing

TIm:4 T	Introduction to coftman					
UIIII I	Introduction to software	(vo nours)				
	architecture					
Bridging Requirement	nts and Implementation, Design Guidelines, Soft	tware Quality attributes. Software				
Architecture Design	Space. Agile Approach to Software Architectu	are Design, Models for Software				
Architecture Descript	ion Languages (ADL).					
Mapping of	CO1					
Course Outcomes						
Unit II	Object-oriented paradigm	(08 Hours)				
Design Principles. Dat	ta-Centered Software Architecture: Repository Arch	itecture, Blackboard Architecture.				
Hierarchical Architect	ure Main-Subroutine, Master-Slave, Layered, Virtua	al Machine. Interaction-Oriented				
Software Architecture	s: Model-View-Controller (MVC), Presentation-Abs	straction-Control (PAC).				
Mapping of	CO2					
Course Outcomes						
Unit III	Distributed Architecture	(08 Hours)				
Client-Server, Middle	ware, Multi-tiers, Broker Architecture – MOM, COF	RBA Message Broker Architecture-				
Service-Oriented Arc	Service-Oriented Architecture (SOA), SOAP, UDDI, SOA Implementation in Web Services, Grid/cloud					
Service Computing. Heterogeneous Architecture- Methodology of Architecture Decision, Quality Attributes.						
Mapping of	CO3					
Course Outcomes						

Unit IV	Architecture of user interfaces	(10 Hours)						
	containers							
Case study-web service. Product Line Architectures methodologies, processes and tools. Software Reuse and								
Product Lines -Product Line Analysis, Design and implementation, configuration Models. Model Driven								
Architectures (MDA) -why MDA- Model transformation and software architecture, SOA and MDA. Eclipse								
modeling framework.	modeling framework.							
Mapping of	CO4							
Course Outcomes								
Unit V	Aspect Oriented Architectures	(06 Hours)						
AOP in UML, AOP tools, Architectural aspects and middleware Selection of Architectures, Evaluation of Architecture Designs, Case Study: Online Computer Vendor, order processing, manufacture & shipping – inventory, supply chain cloud service Management, semantic web services								
Mapping of	CO5							
Course Outcomes								
Unit VI	Model-Driven Architectures and	(08 Hours)						
	Cloud Computing							
Introduction to Mode in MDA, Cloud Com (Public, Private, Hybr	I-Driven Architecture (MDA), MDA components an puting concepts, Cloud service models (SaaS, PaaS id), Architectural considerations for Cloud Computin	nd processes, Model transformation S, IaaS), Cloud deployment models ng.						
Mapping of	CO6							
Course Outcomes	comes							
Text Books: 1. Len Bass, Paul Clements, and Rick Kazman, "Software Architectures Principles and Practices", 2nd Edition, Addison-Wesley, 2003. 2. Anthony J Lattanze, "Architecting Software Intensive System. A Practitioner's Guide", Auerbach Publications, 2010.								

eBooks:

"Software Architecture in Practice" by Len Bass, Paul Clements, and Rick Kazman. This book provides a comprehensive guide to software architecture principles and practices.

MOOC/ Video Lectures available at:

"Architecting Software on AWS" by Amazon Web Services (AWS) on Coursera.

	The CO-PO Mapping											
						Matrix	<u>x</u>					
CO	РО	РО	РО	РО	Р	РО	РО	Р	РО	РО	РО	РО
PO	1	2	3	4	0	6	7	0	9	10	11	12
					5			8				
CO1	1	1	2	1	-	-	-	-	-	-	-	-
CO2	1	2	-	2	-	-	-	-	-	-	-	-
CO3	2	1	2	1	-	-	-	-	-	-	-	-
CO4	1	2	-	2	-	-	-	-	-	-	-	-
CO5	-	-	2	-	-	-	-	-	-	-	-	-
CO6	-	2	1	2	-	-	-	-	-	-	-	-
CO7	1	2	2	-	-	-	-	-	-	-	-	-

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PEC-AI 601 (B): Elective-II Quantum AI

Teaching Scheme	Credit Scheme	Examination Scheme and Marks		
Lecture: 03 Hours/Week	03	Internal Assessment (TH): 40		
		End Semester (TH): 60		

Prerequisites: Data Structure and Algorithm, Programming in Python/C

Course Objectives: The objective of this course is:

1. To impart necessary knowledge to the learner so that he/she can develop and implement algorithm and write programs using these algorithm.

Course Outcomes:

At the end of the course, the students will be able to –

CO 1. To interpret working of a Quantum Computing program, its architecture and program model

CO 2. To develop quantum logic gate circuits

CO 3. To develop quantum algorithm

CO 4. To implement quantum algorithm on major toolkits ions

CO 5. To apply quantum computing principles and algorithms to solve machine learning problems.

CO 6. To understand the applications and limitations of quantum machine learning techniques.

Unit I	Fundamental Concepts (08					
		Hours)				
Global Perspectives –	Quantum Bits - Quantum Computation - Quantum Algorithms	s -Experimental				
Quantum Information F	Quantum Information Processing – Quantum Information.					
Mapping of Course	CO1					
Outcomes						
Unit II	Feature Identification	(08 Hours)				
Feature identification, so ordering, clustering in fe	election and extraction. Distance measures, clustering transformat eature selection, feature selection through maximization and appro	ion and feature oximations.				
Mapping of Course Outcomes	CO2					
Unit III	Classification	(08 Hours)				
Pattern classification by	distance functions. Clusters and cluster seeking algorithms. Patte	rn classification				
by likelihood functions.	Baye's classifier and performance measures.					
Mapping of Course	CO3					
Outcomes						
Unit IV	Neural Network	(10 Hours)				
Artificial neural network model, Neural network-based pattern associators, Feed forward networks and training by back-propagation- ART networks.						
Mapping of Course Outcomes	CO4					
Unit V	Applications	(06 Hours)				

Applications of statistical and neural network – based pattern classifiers in speech recognition, image recognition and target recognition.

L				
Mapping of Course	C05			
Outcomes				
Unit VI	Quantum Machine Learning	(08 Hours)		
Introduction to Quantum Machine Learning, Quantum Neural Networks, Quantum Support Vector Machines, Quantum k-means Clustering, Quantum Dimensionality Reduction, Quantum Generative				

Models.

Mapping of Course CO6 Outcomes

Learning Resources

Text Books:

1. Michael A. Nielsen, Issac L. Chuang, "Quantum Computation and Quantum Information", Tenth Edition, Cambridge University Press, 2010.

eBooks:

"Quantum Machine Learning: What Quantum Computing Means to Data Mining" by Peter Wittek. This book provides a comprehensive overview of quantum machine learning algorithms and their applications.

MOOC/ Video Lectures available at:

"Quantum Computing for Everyone" by The University of Chicago on Coursera. This course offers a beginner-friendly introduction to quantum computing, covering fundamental concepts and applications.

	The CO-PO Mapping Matrix											
CO\ PO	РО 1	PO 2	PO 3	PO 4	P O 5	PO 6	PO 7	P O 8	PO 9	PO 10	PO 11	P 01 2
CO 1	1	1	2	1	-	-	-	-	-	-	-	-
CO 2	1	2	-	2	-	-	-	-	-	-	-	-
CO 3	2	1	2	1	-	-	-	-	-	-	-	-
CO 4	1	2	-	2	-	-	-	-	-	-	-	-
CO 5	-	-	2	-	-	-	-	-	-	-	-	-
CO 6	-	2	1	2	-	-	-	-	-	-	-	-
CO 7	1	2	2	-	-	-	-	-	-	-	-	-

Dr D. Y. Patil School of Science & Technology, Dr D. Y. Patil Vidyapeeth, Pimpri, Pune PEC-AI 601 (C): Elective-II Robotics and Automation

Teaching Scheme	Credit Scheme	Examination Scheme and Marks	
Lecture: 03 Hours/Week	03	Internal Assessment (TH): 40	
		End_Semester (TH): 60	

Prerequisites: MATLAB

Course Objectives:

- The objective of this course is:
- 1. To introduce different types of robotics and demonstrate them to identify different parts and components.
- 2. To write programming for simple operations.

Course Outcomes:

At the end of the course, the students will be able to -

CO 1. To explain the fundamental concepts of robotics

- CO 2. To apply mathematical representations and transformations
- CO 3. To analyze the differential motion and statics of manipulators using velocity and Jacobian matrices.
- CO 4. To implement path planning techniques for robot motion in joint space and Cartesian space.
- CO 5. To understand the dynamics of robotic manipulators and apply control schemes for manipulator motion.
- CO 6. To apply force control methods for robotic manipulators and understand the challenges involved.

Unit I	Basic concepts	(08 Hours)					
Brief history-Types of	Brief history-Types of Robot-Technology-Robot classifications and specifications-Design and control issues-						
Various manipulators – Sensors - work cell - Programming languages.							
Mapping of	C01						
Course Outcomes							
Unit II	Direct and inverse kinematics	(08 Hours)					
Mathematical represent	ation of Robots - Position and orientation - Homogeneous trans	formation- Various					
joints- Representation u	using the Denavit Hattenberg parameters -Degrees of freedom-D	irect kinematics-Inverse					
kinematics- SCARA ro	bots- Solvability – Solution methods-Closed form solution.						
Mapping of	CO2						
Course Outcomes							
Unit III	Manipulator differential motion and statics	(08 Hours)					
Linear and angular velo	ocities-Manipulator Jacobian-Prismatic and rotary joints-Inverse	-Wrist and arm					
singularity - Static anal	ysis - Force and moment Balance.						
Mapping of	CO3						
Course Outcomes							
Unit IV	Path planning	(08 Hours)					
Definition-Joint space technique-Use of p-degree polynomial-Cubic polynomial-Cartesian space technique - Parametric descriptions - Straight line and circular paths - Position and orientation planning.							
Mapping of	CO4						
Course Outcomes							
Unit V	Dynamics and control	(08 Hours)					

Lagrangian mechanics-2DOF Manipulator-Lagrange Euler formulation-Dynamic model – Manipulator control problem-Linear control schemes-PID control scheme-Force control of robotic manipulator.

Mapping of	CO5				
Course Outcomes					
Unit VI	Sensor Integration and Robot	(10 Hours)			
	Perception				
Robot sensing and pero	ception, Types of sensors (e.g., vision, force/t	orque, proximity), Sensor fusion			
techniques, Object reco	ognition and tracking, Robot localization and	mapping.			
Mapping of	CO 6	CO 6			
Course Outcomes					
Learning Resources					
eBooks:					
"Introduction to Robot	ics: Mechanics and Control" by John J. Craig	. This book provides a comprehensive			
introduction to robotic	introduction to robotics, covering fundamental concepts, kinematics, dynamics, control, and applications.				
MOOC/ Video Lectures available at:					
"Modern Robotics: Me	echanics, Planning, and Control" by Northwes	tern University on Coursera. This course			
covers topics such as r	covers topics such as robot kinematics, dynamics, motion planning, and control, providing a hands-on				

approach to learning robotics.

PEC-AI 601 (D): Elective-II Cognitive computing

Teaching Scheme	Credit Scheme	Examination Scheme and Marks
Lecture: 03 Hours/Wee	03	Internal Assessment (TH): 40
		End_Semester (TH): 60

Prerequisites: Machine Learning and Artificial Intelligence

Course Objectives: The objective of this course is:

- 1. Use the Innovation Canvas to justify potentially successful products.
- 2. Explain various ways in which to develop a product idea.

Course Outcomes:

At the end of the course, the students will be able to –

CO 1. To understand the foundation and principles of cognitive computing and its applications.

CO 2. To apply design principles to build cognitive systems and leverage machine learning for hypotheses generation and scoring.

CO 3. To utilize natural language processing (NLP) techniques to support cognitive systems and solve business problems.

CO 4. To effectively represent knowledge using taxonomies and ontologies in cognitive systems.

CO 5. To explore the relationship between big data and cognitive computing, and integrate big data with traditional data sources.

CO 6. To apply advanced analytics techniques to cognitive computing and leverage open-source tools for creating value.

Unit I	Foundation of Cognitive	(07 Hours)
	Computing	
cognitive computing	as a new generation, the uses of cognitive	systems, system cognitive, gaining
insights from data,	Artificial Intelligence as the foundation of o	cognitive computing, understanding
cognition		
Mapping of	CO1	
Course		
Outcomes		
Unit	Design Principles for	(06 Hours)
II	Cognitive Systems	

Components of a cognitive system, building the corpus, bringing data into cognitive system, machine learning, hypotheses generation and scoring, presentation and visualization services									
Mapping of Course	CO2								
Outcomes	Notural Longuage Dragging in								
Unit III	Support of a Cognitive System	(06 Hours)							
Role of NLP in a cognitive system, semantic web, Applying Natural language technologies to Business problems Representing									
Mapping of Course Outcomes	CO3								
Unit IV	knowledge in Taxonomies and	(07 Hours)							
	Ontologies								
Representing knowledge, Defining Taxonomies and Ontologies, knowledge representation, models for knowledge representation, implementation considerations									
Vlapping of CO4 Course Dutcomes									
Unit V	Relationship between Big Data and	(07 Hours)							
Unit V Dealing with human warehouses, Hadoop,	Relationship between Big Data and Cognitive Computing n-generated data, defining big data, archited data in motion and streaming data, integration	(07 Hours) ectural foundation, analytical data of big data with traditional data							
Unit V Dealing with human warehouses, Hadoop, Mapping of Course Outcomes	Relationship between Big Data and Cognitive Computing n-generated data, defining big data, archite data in motion and streaming data, integration CO5	(07 Hours) ectural foundation, analytical data of big data with traditional data							
Unit V Dealing with humar warehouses, Hadoop, Mapping of Course Outcomes Unit VI	Relationship between Big Data and Cognitive Computing n-generated data, defining big data, archited data in motion and streaming data, integration CO5 Applying Advanced Analytics to cognitive computing	(07 Hours) ectural foundation, analytical data of big data with traditional data (06 Hours)							
Unit V Dealing with humar warehouses, Hadoop, Mapping of Course Outcomes Unit VI Advanced analytics is advanced analytics to	Relationship between Big Data and Cognitive Computing n-generated data, defining big data, archited data in motion and streaming data, integration CO5 Applying Advanced Analytics to cognitive computing s on a path to cognitive computing, Key capable o create value, Impact of open source tools on a	(07 Hours) ectural foundation, analytical data of big data with traditional data (06 Hours) ilities in advanced analytics, Using idvanced							
Unit V Dealing with humar warehouses, Hadoop, Mapping of Course Outcomes Unit VI Advanced analytics is advanced analytics to Mapping of Course Outcomes	Relationship between Big Data and Cognitive Computing n-generated data, defining big data, archited data in motion and streaming data, integration CO5 Applying Advanced Analytics to cognitive computing s on a path to cognitive computing, Key capabol create value, Impact of open source tools on a CO6	(07 Hours) ectural foundation, analytical data of big data with traditional data (06 Hours) ilities in advanced analytics, Using idvanced							
Unit V Dealing with humar warehouses, Hadoop, Mapping of Course Outcomes Unit VI Advanced analytics is advanced analytics to Mapping of Course Outcomes Learning Resou	Relationship between Big Data and Cognitive Computing n-generated data, defining big data, archited data in motion and streaming data, integration CO5 Applying Advanced Analytics to cognitive computing s on a path to cognitive computing, Key capable ocreate value, Impact of open source tools on a CO6 rces	(07 Hours) ectural foundation, analytical data of big data with traditional data (06 Hours) ilities in advanced analytics, Using idvanced							
Unit V Dealing with humar warehouses, Hadoop, Mapping of Course Outcomes Unit VI Advanced analytics is advanced analytics to Mapping of Course Outcomes Learning Resou Text Books:	Relationship between Big Data and Cognitive Computing n-generated data, defining big data, archited data in motion and streaming data, integration CO5 Applying Advanced Analytics to cognitive computing s on a path to cognitive computing, Key capable or create value, Impact of open source tools on a CO6 rces	(07 Hours) ectural foundation, analytical data of big data with traditional data (06 Hours) ilities in advanced analytics, Using idvanced							

eBooks:

"Cognitive Computing: A Brief Guide for Game Changers" by Peter Fingar. This book provides an overview of cognitive computing and its potential applications in various industries.

MOOC/ Video Lectures available at:

"Introduction to Cognitive Computing" by IBM on Coursera. This course offers an introduction to cognitive computing, covering topics such as natural language processing, machine learning, and advanced analytics.

The CO-PO Mapping												
Matrix												
CO	P	P	PO	P	P	P	P	Р	P	P	P	PO12
РО	0	02	3	04	0	06	07	0	09	01	01	
	1				5			8		0	1	
CO1	1	1	2	1	-	-	-	-	-	-	-	-
CO2	1	2	-	2	-	-	-	-	-	-	-	-
CO3	2	1	2	1	-	-	-	-	-	-	-	-
CO4	1	2	-	2	-	-	-	-	-	-	-	-
CO5	-	-	2	-	-	-	-	-	-	-	-	_
CO6	-	2	1	2	-	-	-	-	-	-	-	_